Luxand, Inc.
LU AN D https://www.luxand.com

Luxand FaceSDK
8.2

Face Detection and Recognition Library

Developer’s Guide

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 1

Table of Contents

OVBIVIBW ..ttt etttk et h e bt et b ekt e st e b e b e e ne e e bt e e b e e st e eheenbeaneesneenbeenneas 7
REGUITEIMENTS ...ttt b ettt ettt nbe e 7
Technical SPECITICALIONS.........c.cciiii i e et nas 8
S ol DI =T ot (o) RSSO T TSP ST S PRUPTURPRPRTON 8
FACE MAtCRINE ...ttt b bbbt bbb s bbbt s e s e et e bt e b e e bt eneeb e b nre 8
Live Video Recognition With Tracker AP ... 8
Facial FEature DeTECTIONc..ciiiiiiiiitisieite et b e b b an b b nne 9
LDl 0 02 o3l B L1 =Tt o) U USSR 9
GENAET RECOGNITION. .. .c.eiuiiiiiiciicie et bbb bbb et e et e st eb e bt anesb e b ane 9
AZE RECOGIMITION......cuiiiiii i b et h b b e b bbb e et e st e b e e bt b e bt e b b e nr e b s 9
Facial EXpression RECOGNITIONccviiiiiiiiiiicie s 9
|72 s LTy e (=] =Tt o) o PSSP 9
IMULEE-COTE SUPPOTLE ..ttt h bbbt Rt b et r R e et e bt ene b e re e 10
LIDTAIY SIZE ..ttt E ettt r e 10
INSTAITATION ... bbbttt bbb e 10
WVINAOWS .. h R bR e R R Rt e R bRt n et n e 10
LINUXIMACOS ...ttt Rt n e 10

[T (o (o] YA £ (1T 11 PP 10
SaAMPIE APPHICALIONS.eiiiiie et e e e nreenee e 11
Using FaceSDK with Programming LangUagES...........cceeeeuererreerieneeseerieeeeseenieseeseeeneas 13
USING WIth .NET (C# AN0 VB)uiieiiiie ettt st st b ettt e st b et eae et e b 13
USING CIMAge ClaSS IN INET ...ttt bbbt st b et e e et e be e e beene b e b e 14

(O [=To = (SO UOUTT TP UROUR PRSPPI 15

L0 [= To T (1] SRS USRS 15
CImage.ReloadFromHANGIE();cvieiiieieriecie et sttt sttt e e e e e s s e e eneeseetasreaneas 15

L L [AT 1 T O L O PP 15

L L [oI T 9T o] oSS 16

L L LTI - AV VPP 16

L L [T AT 1 T O o T P 16
USING WIth VISURIBESIC 6.0cveiiiiietirieiisieieste sttt b et bbbt se et sb et sb et be e ebe e b 16
USING WITN TOS ..ottt et bbb bbbt b et b e et se ekt e bt s b e bt e b et eb et ebe e b e 17
USING WITN ANAIOI ...ttt bbbt bbbt bbb bt s b bt bt e bt abe e b 17
USING WITN PYENON <.ttt bbbt e bbbt e b e bt b st b e eb e e ene e 17
USING WITN FIULEE ...ttt bbbt b bt ekt se bt b bbbt b bbb e b e e ene e 17
USING WIth REACE NALIVE ...ttt bbbt e b et et e e e e et et eneebeeneeneeeesee e 17
USING WIth WED ASSEMBIY ...ttt bbbt e et et e bt et e be bt ebe b e 18
(0T Tedo o [T o] oo { SO SO TS UR PSS UR TSR 18
RedISTIIDULADIES. ...t 18
USBGE SCEIMANTIOS ...veveeseenee ettt sttt ettt bbbt b et e bbbt bt bt b e e st et et e nb e b e b e sbenbeene s 18
LiDrary ACHIVALION.........ooiiiiic et e be e e e beeanes 19
FSDK_GetHardware 1D FUNCHIONcoiiiiiicicce sttt et b e sne e te e sneeneesneennas 20
FSDK _ACHVALELIDIary FUNCLIONcc.oiviiviice ettt sttt sttt e s s e ene e s e neeneeeesne e 20
FSDK_GetLicenseINfo FUNCLIONciiiiiicieieeiceeee ettt sttt sttt eena s e neeneereene e 21
INTEANIZATION ...ttt sttt sr et e e sbe e beanee s 22
FSDK_INitialize FUNCLION ..ot 22
FSDK_FINAIIZE FUNCHIONvviiiiiiiiciciciciiic bbb bbb bbb bbb 23
CONTIGUIATION ... bbbt bbbt ettt b 23

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 2

FSDK _SetParameter FUNCHION.c.oiiieieiieeeee ettt sttt sttt e et ene e s e neeneebe b ne 23
FSDK _SetParameters FUNCHIONcciiiiiiicie ettt ettt et e st e b e be e beeneesbeeneesreennas 24
FACESDIK PAIAMELEISeeiitiitiete ettt ettt etttk b e e st e s b e e st e e b e es b e s bt e bt eb e et e ebe et e eneeabeeneesbeannas 26
FACE UEIECTION PAIAMELENS. ... cueitiitiitiete sttt sttt et ettt b bbbt skt b e b e besbesb e b s b e s es b e e e e enb e s e eseene et e nbe e 26
WOrKING WITN TMAGES ..ottt sneesreenee s 26
FSDK_CreateEmptylmage FUNCLIONooiiiiiiiiice ettt 27
FSDK_L0oadImageFromEile FUNCLION ..ottt 28
FSDK_LoadlmageFromFiIEVW FUNCLIONoouiiiiiiiiicese et 29
FSDK_SavelmageTORile FUNCLIONooiiiiicceee ettt 29
FSDK_SavelmageTOFIEW FUNCLION........cc.oiiiiieieee ettt 31
FSDK_LoadlmageFromBuUffer FUNCLION. ..o ittt 31
FSDK_LoadlmageFromJpegBuffer FUNCHIONcociiiiiieci et 33
FSDK_LoadlmageFromPngBUfer FUNCHIONc.civiiiiiice ettt 33
FSDK_GetlmageBuUFferSize FUNCLIONcco i sttt e nesre s 34
FSDK_SavelmageTOBUTTEr FUNCLIONc.covoiiecicicc sttt ere e 35
FSDK_LoadlmageFromHBItMap FUNCHIONcociiiiiiicisie et 36
FSDK_SavelmageTOHBItMAP FUNCLIONoiiiiiiiiiiie ettt 37
FSDK.LoadImageFromCLRIMAGE FUNCLIONcoiiiiiiiiiieiiiieicriee sttt 38
FSDK.SavelmageTOCLRIMAGE FUNCHION ..ot 38
FSDK.LoadImageFromAWTIMAGE FUNCLIONcoooiiiiiieei et 38
FSDK.Savelmage TOAWTIMAGE FUNCLION........coiiiiiiiieicte ettt 39
FSDK_SetJpegCompreSSiONQUANTLY..........ooviiiiiieieieeeeeies ettt st ne s seeneseesne e 39
FSDK_GetImageWidth FUNCHIONcouiiiiiiieceee ettt 40
FSDK_GetImageHEIght FUNCLIONoouiiiiiieeice ettt ettt sb e 41
FSDK_COPYIMAGE FUNCLION ...ttt bbbt bbbttt b et eae b e b e 41
FSDK_RESIZEIMAGE FUNCLIONoviitiiie ettt sttt sttt st et e s e st ene e e e e ensesaeneeneerenreans 42
FSDK_ROtatelMage FUNCHIONcuoiiiieieiecce et sttt sttt e sa e e e e eneesa e e eneerenre e 43
FSDK_RotatelmageCenter FUNCLION.........cccivi e ettt sttt sttt st naenaesa e e eneeresreens 44
FSDK_Rotatelmage90 FUNCLIONcc.eiiiiiieeieceiee ettt sttt eeneese e e eneerenreens 45
FSDK _COPYRECE FUNCLIONeitiiiiiiii ettt sttt sttt sn et e st e s e seeneeneereeneenenre e nns 46
FSDK_CopyRectReplicateBorder FUNCLION..........cooviiiiiiie et 47
FSDK_MirrorImage FUNCHIONcoueiiiiiiiiieesieete ettt eb e ebe e 48
FSDK_Freelmage FUNCHIONcouiiiieiiriitiieeeit ettt ettt b bbbt b e eb e b 49

[Lo D L =Tt 1 o] o TR U SR P TP PP PO 50
Face DEteCtION IMOUEIScueiiieieiie ettt bbb ettt b et se b st esbe ettt e 50
Face Detection 0N ThermMal IMAGESc.eiirierieieicieese ettt sttt st et e e e s e se e e eneeseeneeneerenreans 51
DALA TYIES ... ettt e Rttt et 52
FSDK _DELECLFACE FUNCLIONcuiiitiietiieeiesiet sttt b ettt ettt sb et b et b et ab e ebe e 53
FSDK_DeteCtMUItIPIEFACES FUNCHION.c.iiiiiitiiitciee ettt ene e 54
FSDK_SetFaceDetectionParameters FUNCHIONoviiiiiiiiiise e 56
FSDK_SetFaceDetectionThreshold FUNCHIONcvoiiiiiiiiicisese e 58
Facial FEature DEECTIONcc.vcieiieie ettt e e e nneenns 59
FSDK_DetectFacialFeatures FUNCLIONc.ciiiiiiiiiiiiciccccc s 60
FSDK_DetectFacialFeaturesSINRegion FUNCHIONcccciiiiiiiiicicccc e 61
FSDK_DEteCtEYES FUNCLION. ..ottt 63
FSDK_DetectEyesINREgION FUNCHION.......ccciiiiiiiiicccic s 64
DEteCtEd FACIAI FEAIUISi ittt bbbttt b b bt e b e e e et e se e e et ebe et e beeaeebe b e 66
MaSK-0N FaCE DELECTION.......ccueiieiieieiie et e et e te e e sneesreeeesreenneeneeas 69
TRV o (o]] 1 o S SR RSSPR 70
FSDK_GetFaceTemplate FUNCHIONcciiiieieicieiee ettt sttt enaera e e eneereene e 71
FSDK_GetFaceTemplateINREeGION FUNCLION.........ccvciiiieicice e sre e 72
FSDK_GetFaceTemplateUSINGEYES FUNCLIONcviieieiiece et sne s 73
FSDK_GetFaceTemplateUsiNgFeatureS FUNCLIONcvcviiiiiisece et 75
FSDK_MaAtCHFACES FUNCLION.c.eitiietiieiisieiese ettt ettt sttt b et b et ebe et ene e 76
FSDK_GetMatchingThreShOIdAtFAR FUNCLION ..ottt 77
Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 3

FSDK_GetMatchingThreSholdAtFRR FUNCLIONcoviiiiiiiiiriecietsieeseeste ettt 78
Gender, Age and Facial EXpression RECOgNITIONcccovvieiiriineienisesieeee e 79
FSDK_DetectFacial AttributeUsingFeatures FUNCLIONc.coiieiiiiiiiieiee e 79
FSDK_GetValueConfidenCe FUNCLIONcviiiiiiiiicie ettt e 81
LIVENESS DETECTION ..ottt bbbttt bbbt bbbttt sbenbenre s 82
PASSIVE LIVENESSvveteiiite ettt sttt st ettt b et b ettt ettt s b bt s e b e e b bt e b e s e e b e et s e ek e ne e b e s e et e sb et e ebebeabe e ebe e ebe e 82
AACTIVE LIVENESS ..ttt bbbt b ekt ek e e bt e bRt b et e bt ekt ekt e bt et bbb b b 83
THhermal FACE DELECTION.......cvci ittt ettt te st st et e saese e e e e e e neesaeseeneenenrenrenneas 83
iBeta Certified LiVENesS ACG-0Nooiiiiiiiiiiiiisisieie et 83
X 1YL T] o OO OO SO PSP 84
INTEAIIZALION ... et ettt ettt s b e bR s b et s b st b et ettt sttt b b ne b 84
Lo QT LI U 1o TSRS 84
iBeta [Iveness add-0n filES........ciiiic bbb 86
IMAGE TEOUITEIMENESetiiiiteti ettt b etk ek et ek s b bt e b e bt s b et b e e e be e bt ettt e et e b be b 86
IMAGE TOIMAL......coeiteeeec bbbt b et b e ekt e bbbt s b et e sb ettt s e eb et ebe et e 86
IMAGE FESOIULION ...ttt b bbbt bt b e ekt e ekt b et e nb bt e b bt sb et ebe e b e 86
IMAGE COMPOSITION ...ttt ettt b bbbt bbbt ekt e e bt sb bt nb bt b e s e e b e ebe e ene e 86
SAMPIE TMAGES ...ttt bbbt bbbt bbbt b e bt e b et e b st bbbt e bt e bt et bbbt n e 87
LCTol0 o =N Ty o] LT OSSOSO USSR 87
Correct, but Not good eNOUGN SAMPIEScuiiviiieeee e sne 87
INCOTTECE SAMPIES ... ettt bbb bbbt bbbt s b et e e b e e e et eneeh e e se e bt et e et e abeebe e 88

(@001 00T L] T 1 =TSSR 90
WOrKING WITN CaMEBIAS.......eiiiiieiiieieeie ettt sttt st et esbeeneesreesbeenee s 90
DALA TYPES ..ttt ettt h et h bR R R R R Rt h et h et 91
FSDK _InitializeCapturing FUNCHIONooviiiiiiiieieceee ettt bttt et eb e b e 92
FSDK_FinalizeCapturing FUNCLIONco.iiiiiiiiiieee et sttt et 93
FSDK_SetCameraNaming FUNCLIONcc.oiiiiiiiiceiceiee sttt bbb sb e 94
FSDK_GetCameraliSt FUNCLIONcoiiiiiiiieiieecie ettt sttt sttt sttt a e e e e eneesa e eneeresre e 94
FSDK_GetCameralliStEX FUNCHIONcciiviieiiiciceee ettt sttt et enaesa e enesresne e 95
FSDK_FreeCamerabliSt FUNCHIONcccoiiiiieiieccieeee ettt et ena e e neeneeresne e 96
FSDK_GetVideoFormatLiSt FUNCHION........c.cociiiicicieece ettt ne st ne e srenne s 97
FSDK_FreeVideoFormatLiSt FUNCLIONccoiviicicieecc ettt e ne s 98
FSDK_SetVideoFOormat FUNCLIONccoiieiiieieiceise et na e e eneesa e enesrenreans 98
FSDK_OpenVideoCamera FUNCLIONccoeiiiiiiiiieise sttt ettt sbe e sne e 99
FSDK_OpenIPVideoCamera FUNCHIONccoeiiiiiiiiiieise et s 100
FSDK_SEtHTTPPIOXY FUNCLION ..ottt sttt st 101
FSDK_GrabFrame FUNCHION.........oiiiiie ettt sttt ettt et eneebe b e nesbenes 102
FSDK_CloseVideoCamera FUNCLION.cc.ciiiiiiecce ettt ettt sbe e sae e stesneesreeneea 103
Tracker API: Face Recognition and Tracking in Video Streams..........cccocevvnencinniennn. 104
WAL IS TFACKET AP ...ttt ettt et este st e st e eeseesa e beae e enten e neeneeneereeneenens 104
UNAerstanding IABNTITIEISviiie ettt st e et et e e e eneeneereeneeeenes 106

A subject can have several IdeNtIfIErS.o 106
METGEr OF THENTITIEIS ...ttt b bbbttt 106
When identifiers are NOt MEFGEU.ooiiiiiic bbb e b b 107
SIMITAE TABNTIIBIS. ...ttt b ettt st ettt et e se et en e e s e e neeneereene e 107
LI (6 T Y/ (=T T o SO U USROS 107
Memory available for aCh SUDJECT..........ooi e 107
IMPOSING MEMOTY TIMITSetiitiitiite ettt b b st e bbb et et et eb e e b e s b b 108

HOW 0 Set the MEMOIY LMtccooiiiciie ettt e e s e e e eneens 108
THACKET PATAMELEIS ...ttt ettt et b ettt b et s et s et et bbbttt s et sttt nes 108
FaCe traCking PArAmMELEIScviiie ettt sttt st et et et et et et e s eneeneeneenenrs 108

FaCe reCOgNItION PAFAMETEIS. ... c.viicriee e sere st e et e e e e et e be s restesee st e teseeneeneen s e neensensereeneanenren 109
Facial feature tracking PArameterSccccvvvierirere e ee e e ettt e e e ensese e e eneenennes 109
Tuning for OptiMal PEIFOIMANCE. ..ottt nes 110
USING T8 AP ..ot etttk bbb bbbt ekt ekt ek et e et bbb 110
Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 4

LOCKING IUENTITIETS ...ttt bbbt e b ettt bbbttt enes 111

MUILIPIE CAMEIA SUPPOIT.... .ttt ettt ettt et et e bt sbeseesbesbeseese et e se e e s eseeneaneeneeras 111
Storing original faCial IMAGESciiiiiiie e ettt et b e 111
USBGE SCENMAITO ..ttt ettt b bt b bttt e e e e e st e b £ e b e b e e b e e b e bt e b e eb e eb e eb e e b e nb e eb et et et ensebeebeeneebeats 111
User Interaction With the SYSIEIM........c..iiioi e et sre e e e 112
ENEOIIMENL. .t b bbbt e R bRt E et 113
Dealing With falSe @CCEPIANCES.cvieie e re st et e bbb e b e e e b esae e eneereans 113
Saving and Loading TraCKer IMIBIMOIYcciiiieiireseseesteste et e sttt be e st e e e e e enseneeneeneenenns 113
RECOGNItION PEITOMMANCEeiviviiie ettt sttt sttt et e e e et e s e e e e e eneereeneenenrenrn 114
PErfOrMANCE MEASUIES.eiveeiiiireieiee sttt r ettt et nen s 114
UNderstanding StOragE BVENTS.c.oouiiriiirieti ettt ettt bbbttt b et bt b bttt be s 114
How to measure your rate Of SLOFAgE BVENTSciiiiiiiiiiriei ettt 115
UNAErStANAING FAR ..ottt bbb bbb b et b e bbbt b b 115
UNAEISTANAING R ...ttt bbb bbb bbb bbbt bbbt es et enes 115
Cho0oSiNg TRFESNOIA VAIUEcocuiiiiici bbb 115
Gender, Age and Facial EXpression RECOGNITIONcvieirieiiiiieiie ettt 116
Face, Eye and Facial FEAtUre TraCKING.........coue ittt ettt ettt 117
Counting the NUMDBET Of PEOPIE.........oiiiiii e ettt 117
TREEAA SATELY ...ttt b bbbt b e bt s h e b e b ne e b et e e e e eh e e neeneeb e ne e 118
FSDK _CreateTraCker FUNCLIONcci ettt st sttt st se et e st eneene e e eneereens 118
FSDK_FreeTracker FUNCLIONociiiiieiiiice ettt st sttt sn et sn e et ena e e eneereans 119
FSDK _ClearTraCKer FUNCHION.......cciiiiieiiitiie ettt st sttt st e e st s e sa et ensesaeneaneareans 119
FSDK_SetTrackerParameter FUNCLIONcc.oiviicicicicc ettt ne e e ereens 120
FSDK_SetTrackerMultipleParameters FUNCLION.........cociciiiir st 121
FSDK_GetTrackerParameter FUNCLIONccooiiiiiieiieise ettt 122
FSDK_FEEUFTAME FUNCHIONviiiteiieieiete ettt ettt b e 123
FSDK_GetTraCKerEYeS FUNCHIONcciviiiiiiiiieiiiet ettt 124
FSDK_GetTrackerFacialFeatureS FUNCLIONcooiiiiiiiiiieiiie et 125
FSDK_GetTrackerFacePoSition FUNCLIONcccoeiiiiiieiiie et 127
FSDK_GetTrackerFacial Attribute FUNCLIONcoooiiiiiiiieie s 128
FSDK _LOCKID FUNCLION ...viitiiiicicite ettt ettt te e st te st besteebeens e beessesaeentesbeeaesaaeseesneeseenneens 129
FSDK _UNIOCKID FUNCLIONotiiiiiiticieits sttt sttt sttt e ens e baensesaeentesaeennesneesresneesreeneens 130
FSDK_PUIGEID FUNCLION ...ttt ettt b e bbb bbb ettt et et be bt 131
FSDK_GEtNAME FUNCHION.......citiiiiiiiiteiie ittt ettt se et eete et te s te st e s testestesbe st st et et e e et esbesseseenseteeseanearenees 132
FSDK_SEENAME FUNCLIONeviiviiiecicic ettt sttt st et bbb e e e et e st e e e e enseneeseenearears 133
FSDK_GetIDReassignNmMENt FUNCLIONccviiieiiiiciciciect sttt st ena e e eneeneans 134
FSDK_GetSimilarIDCOUNt FUNCLIONoiviiiieiieicieieie ettt st e e ena e e eneerenns 135
FSDK_GetSimilarIDLISt FUNCHIONccuiiiiiic ettt ettt e e s e neereens 136
FSDK_GEtAIINGMES FUNCHIONviiviieieieciie et sttt st e e e e en s ene e e eneereenn 137
FSDK_SaveTrackerMemory TOFile FUNCHIONccooiriiiiiiiiieee e 138
FSDK_LoadTrackerMemoryFromEile FUNCLION.coo i 139
FSDK_GetTrackerMemoryBufferSize FUNCLION.ocoiiiiiiieenc e 140
FSDK_SaveTrackerMemory TOBUTTEr FUNCLIONcccoiiiiiiiiiiiceee e 141
FSDK_LoadTrackerMemoryFromBuUTfer FUNCLIONccoiiiiiiiniciiceneee e 142
IMUIEI-COIE SUPPOIT. ...ttt bbbttt bbb 143
FSDK_GetNUMTRIEads FUNCLIONocveieiiiieie et sttt st ene e e eneereens 143
FSDK_SetNUMTAIEAAS FUNCLION ..ottt bbb 144
THFEAA SATELY.....cui e et e e ra e e enraers 145
AV [0 = 1[0 o 1SR RURRTR 146
Migration from FaceSDK 8.1 t0 FACESDK 8.2ccccvviiiiiiiiiiiiiii 146
Migration from FaceSDK 7.2, 7.2.1 10 FACESDK 8.0, 8.1ecviiiieiiii e 146
Migration from FaceSDK 7.1 10 FACESDK 7.2, 7.2.1 ...cvoveieeeeer ettt enea 146
Migration from FaceSDK 6.5.1 10 FACESDK 7.0, 7.1 ...cvoveieeeeei et e e enea 146
FACE DBIECTION ...t n e 146
Template fOrmMat CRANQES........viiierere ettt sttt st e e ae e e s eneeseeneeneereanennens 147
Removal of libstdc++ dependency 0N 1OS........ccccviviiiiieieee e enenns 147
Migration from FaceSDK 6.5 t0 FACESDK 6.5.1ccuciiiiiiiiiiirieisese e 147
Migration from FaceSDK 6.3, 6.3.1, 6.4 t0 FACESDK 6.5ccoviiriiiiiiiire e 148

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 5

Template fFOrmMat CRANGES ..ot bbbttt bbb 148

TEMPIALE MAICHINGttt ettt b ettt st bt e e e e et et e beee e e e s e e e eneeneareaneaneas 148
TrACKET AP CRANQES. ...ttt ettt b e bbbt b e bkt s bt e b e b e s aesb et e be e e b e seereene e bt abeabesneas 148
Migration from FaceSDK 6.2 t0 FACESDK 6.3, 6.3.1, 6.4cooiiiiiriiiiire et 149
Migration from FaceSDK 6.0, 6.0.1, 6.1 t0 FACESDK 6.2ccveiieiiiiee e 150
Migration from FaceSDK 5.0, 5.0.1 to FaceSDK 6.0, 6.0.1, 6.1c.ccoccvrviiiieniiieie e seeee e e e e e 151
Migration from FaceSDK 4.0 t0 FACESDK 5.0, 5.0.1 ..c.voviiiiiicieece e enea 151
Migration from FaceSDK 3.0 10 FACESDK 4.0cvoiiiieiiicieieeee ettt st a e re e ene 152
Migration from FaceSDK 2.0 10 FACESDK 3.0cviiiieieieieieece ettt e e sne s 152

[o] g @0 [RSP PRR 153
Library INFOrMAatIONcoooiii e e 154

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 6

Overview

Luxand FaceSDK is a cross-platform face detection and recognition library that can be easily
integrated into the customer’s application. FaceSDK offers the API (Application Programming
Interface) to detect and track faces and facial features, to recognize gender, age and facial
expressions (if a smile is present and if the eyes are open or closed), and to recognize faces on
still images and videos. FaceSDK also allows detecting faces on thermal images.

FaceSDK is provided with Tracker APl which allows tracking and recognizing faces in live
video. Tracker API simplifies working with video streams, offering the functions to tag subjects
with names and recognize them further.

The SDK provides the coordinates of 70 facial feature points (including eyes, eyebrows, mouth,
nose and face contours). Luxand FaceSDK uses multiple processor cores to speed up
recognition. The library supports DirectShow-compatible web cameras on Windows, v4I2-
compatible web cameras on Linux and IP cameras with an HTTP/MJPEG interface on every
platform.

Luxand FaceSDK is a dynamic link library available for 32-bit and 64-bit versions of Windows
and Linux, 64-bit macQOS, i0S, Android. The SDK contains interface header files and sample
applications for C++, Microsoft Visual C++ 6.0/2005/2008/2010/2012/2013/2015/2017+,
Visual Basic .NET 2005/2008/2010+, Microsoft C# .NET 2005/2008/2010+, Borland Delphi
6.0+, Netbeans (Java), Xcode 7+ (iOS), Eclipse ADT (Android), Android Studio (Android),
Visual Basic 6.0, C++Builder 6.0, Python, Flutter and React Native.

Requirements

The FaceSDK library supports the following platforms:
e Windows 2008R2/2012/2016/2019/2022, Windows 7, Windows 8, Windows 10,
Windows 11
Linux (RHEL 8+, CentOS 8+ and other with glibc 2.28+)
Linux armv7/arm64 (Raspberry Pi2+)
macOS 10.13+, arm64/x86_64
iI0S 12.0+, arm64/ armv7/ x86_64/ x86(iPhone, iPad, simulator)
Android 5.0+ (platform version 21+), arm64 (arm64-v8a)/ armv7 (armeabi-v7a)/ x86

An Intel Xeon or AMD Ryzen processor is recommended for better performance.
Minimum system requirements:

e 1 GHz processor
e 256 MB RAM

Recommended system requirements:

Intel Core i7, 19, Xeon or AMD Ryzen processor

2 GB RAM

DirectShow/v4l2-compatible webcam (on Windows or Linux)
IP camera with MJPEG interface (like AXIS IP cameras)

Note that the web camera functions are available only on Windows and Linux. IP cameras are
accessible on all platforms.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 7

Technical Specifications
The FaceSDK library has the following technical specifications:

Face Detection

Robust frontal face detection

Detection of multiple faces in a photo

Detection of faces on thermal images

Head rotation support: —30..30 degrees of in-plane rotation and —30..30 degrees out-
of-plane rotation

Determines in-plane face rotation angle

Detection speed:

o Realtime detection (webcam resolution, —15..15 degrees of in-plane head
rotation): 0.00154 seconds (649 FPS) (AMD®), 0.00863 seconds (116 FPS)
(10S*), 0.01414 seconds (71 FPS) (Android*)

o Reliable detection (digital camera resolution, —30..30 degrees of in-plane head
rotation): 0.0081 seconds (AMD), 0.05 seconds (i0S), 0.082 seconds (Android)

Returned information for each detected face: (x,y) coordinates of face center, face width
and rotation angle
Easy configuration of face detection parameters

Face Matching

Matching of two faces at given FAR (False Acceptance Rate) and FRR (False Rejection
Rate)
Enrollment time:

o Webcam resolution, using FSDK_GetFaceTemplate: 0.01417 seconds (71
FPS) (AMD), 0.03725 seconds (27 FPS) (iOS), 0.0777 seconds (13 FPS)
(Android)

Template Size: 1040 bytes
Matching speed:

o Single thread, templates per second: 5000000 (AMD), 3205128 (iOS), 242600
(Android)

o Multiple parallel threads, templates per second: 53763440 (AMD), 10101010
(i0S), 1096791 (Android)

Returned information: facial similarity level

Live Video Recognition with Tracker API

Assigns a unique ID to each subject detected in video

Allows tagging any subject in video with a name, and recognizing it further
No requirement for a subject to pose to be enrolled

Constant learning of subjects’ appearance

Provides with estimates of false acceptance rate and recognition rate
Tracks multiple faces and their facial features

Recognizes male and female genders

Recognizes age

Recognizes facial expressions

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 8

e Detects whether a subject is live

Facial Feature Detection

e Detection of 70 facial feature points (eyes, eyebrows, mouth, nose, face contour)

e Detection time (using FSDK_DetectFacialFeaturesinRegion, not including face
detection stage): 0.00027 seconds (3733 FPS) (AMD), 0.0003 seconds (3333 FPS)
(10S), 0.00188 seconds (531 FPS) (Android)

e Allowed head rotation: —30..30 degrees of in-plane rotation, —20..20 degrees out-of-
plane rotation

e Returned information: array of 70 (x,y) coordinates of each facial feature point

Eye Centers Detection

e Detection of eye centers only, detection time (not including face detection stage):
0.00027 seconds (3752 FPS) (AMD), 0.00028 seconds (3571 FPS) (iOS), 0.00188
seconds (531 FPS) (Android)

e Returned information: two (X,y) coordinates of left eye center and right eye center

Gender Recognition

e Recognition of different genders

e Gender recognition time (not including face and facial feature detection stages): 0.0039
seconds (AMD), 0.0063 seconds (iOS), 0.0122 seconds (Android)

e Returned information: confidence level in each gender

Age Recognition

e Recognition of age

e Age recognition time (not including face and facial feature detection stages): 0.0051
seconds (AMD), 0.0075 seconds (iOS), 0.0131 seconds (Android)

e Returned information: age of a person

Facial Expression Recognition

e Recognizes if the subject smiles and if the eyes are open or closed

e Expression recognition time (not including face and facial feature detection stages):
0.0043 seconds (AMD), 0.0063 seconds (i0S), 0.0122 seconds (Android)

¢ Returned information: confidence level in each facial expression

Liveness detection

e Detects whether the subject is live (i.e. not a photo/video presented to the camera)

e Works with still images and videos

e Liveness detection time (not including face and facial feature detection stages): 0.017
seconds (AMD), 0.016 seconds (iOS), 0.034 seconds (Android)

¢ Returned information: the probability of the subject being live

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 9

Multi-Core Support

e The library uses all available processor cores when executing face detection or
recognition functions to maximize the performance.

Library Size
e The size of the redistributables does not exceed 160 MB for each platform.
“ Measured on AMD Ryzen 5 1600X processor with 12 threads, iPhone X with 6 threads,
Google Pixel 2 (Snapdragon 835) with 8 threads.
Installation

Windows

To install Luxand FaceSDK, run the installation file:

‘ Luxand FaceSDK Setup.exe |

and follow the instructions.

FaceSDK is installed to the C: \Program Files\Luxand\FaceSDK {VER} directory
on 32-bit machines and to the C: \Program Files (x86) \Luxand\FaceSDK {VER}
directory on 64-bit machines by default, where {VER} is the version number of FaceSDK.

FaceSDK is a copy-protected library, and your application must activate the library on startup
(see the Library Activation chapter).

Linux/macOS

Unpack the Luxand FaceSDK.tar.bz2 archive into the desired directory.

Directory Structure

The FaceSDK directory contains the following directories and files:

bin\ FaceSDK binary files

bin\android FaceSDK Android binaries

bin\iOS FaceSDK i0S binaries
bin\linux_armv7 FaceSDK Linux/ARMV7 binaries
bin\linux_arm64 FaceSDK Linux/ARM64 binaries
bin\linux_x86 FaceSDK Linux 32-bit binaries
bin\linux_x86_64 FaceSDK Linux 64-bit binaries
bin\osx_x86_64 FaceSDK macOS Intel 64-bit binaries

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 10

bin\osx_arm64 FaceSDK macOS ARM64 binaries

bin\win32 FaceSDK Windows 32-bit binaries and stub library files
bin\win64 FaceSDK Windows 64-bit binaries and stub library files
demo\ Demo applications (win32)

include\ Header files

samples\ Sample applications

Sample Applications

FaceSDK is distributed with the following sample applications (they can be found in the
FaceSDK samples\ directory):

1. LiveRecognition

This application receives video from a camera, allows tagging any subject with a name,
and then display the name (recognizing the subject). The application utilizes Tracker
API. Source code is available on Microsoft C# 2005/2008, Microsoft C# 2010 and
higher, iOS (Objective-C and Swift), Android (Eclipse and Android Studio), Borland
Delphi 6.0 and higher, C++/GTK 3.0+, Microsoft Visual C++
2005/2008/2010/2012/2013/2015/2017, Microsoft Visual Basic .NET 2005/2008,
Microsoft Visual Basic .NET 2010 and higher, Java and Visual Basic 6.0. The
I0S/Android versions are published in the Apple AppStore and in Google Play
(“Luxand Face Recognition” application).

FaceTracking

This application receives video from a webcam and highlights all detected faces with
rectangles. The application utilizes Tracker API. Source code is available on Microsoft
C# 2010 and higher, Borland Delphi 6.0 and higher, Microsoft Visual C++
2005/2008/2010/2012/2013/2015/2017, Microsoft Visual Basic .NET 2010 and higher,
Java and Visual Basic 6.0.

Lookalikes

This application allows the user to create a database of faces and run a search for the
best matches (the most similar face from the database is shown). Source code is
available on Microsoft Visual C++ 2005/2008/2010/2012/2013/2015/2017, Microsoft
C# 2010 and higher, Java and Borland Delphi 6.0 and higher. There is an example of
working with Microsoft SQL database on Microsoft C# 2010 and higher, and with and
SQLite on Microsoft Visual C++ 2005/2008/2010/2012/2013/2015/2017. To run the
Microsoft SQL example, you need to attach the database (located in the DB folder of
the sample) to the Microsoft SQL Server.

LiveFacialFeatures

This application tracks users’ facial features in real time using a web camera. The
coordinates of facial features are smoothed by Tracker API to prevent jitter. Source code
is available on Microsoft C# 2010 and higher, Borland Delphi 6.0 and higher, Java,

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 11

Microsoft Visual C++ 2005/2008/2010/2012/2013/2015/2017, i0S, Android (Eclipse
and Android Studio) and Microsoft Visual Basic .NET 2010 and higher.

5. AgeGenderRecognition

Using Tracker API, this application recognizes the gender and age of a subject looking
into a webcam. Source code is available on Microsoft C# 2010 and higher, Borland
Delphi 6.0 and higher, Java, Microsoft Visual C++
2005/2008/2010/2012/2013/2015/2017, i0S, Android (Eclipse and Android Studio) and
Microsoft Visual Basic .NET 2010 and higher.

6. ExpressionRecognition

Using Tracker API, this application recognizes if a subject looking into a webcam is
smiling, and if the subject's eyes are open or closed. Source code is available on
Microsoft C# 2010 and higher, Borland Delphi 6.0 and higher, Java, Microsoft Visual
C++ 2005/2008/2010/2012/2013/2015/2017, i0S, Android (Eclipse and Android
Studio) and Microsoft Visual Basic .NET 2010 and higher.

7. FacialFeatures

This application opens a photo, detects a face in a photo (only one face, the one that can
be detected best), detects facial features and draws a frame around the detected face and
detected features. Source code is available on Microsoft C# 2010 and higher, Borland
C++ Builder 6.0, Borland Delphi 6.0 and higher, Java, Microsoft Visual C++
2005/2008/2010/2012/2013/2015/2017, i0S, Android (Eclipse and Android Studio),
Microsoft Visual Basic .NET 2010 and higher, Visual Basic 6.0.

8. IPCamera

This application opens an IP camera (allowing the user to specify its address, user name
and password), displays the image from the camera and tracks faces. The application
utilizes Tracker API. Source code is available on Microsoft C# 2010 and higher,
Borland Delphi 6.0 and higher, Java, Microsoft Visual C++
2005/2008/2010/2012/2013/2015/2017 and higher, Microsoft Visual Basic .NET 2010
and higher.

9. Portrait

This application is for the command line. The application receives a picture, detects a
face and, if the face is found, crops it and saves it to a file. Source code is available on
C++.

10. Thermal

This application loads a thermal face detection model and allows you to open a grayscale
thermal image (which you may have received from a thermal camera), detect faces on
the image and draw frames around the detected faces. Source code is available on
Microsoft C# 2010 and higher, Microsoft Visual C++
2005/2008/2010/2012/2013/2015/2017 and higher, iOS, Android and C++.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 12

11. ActiveLiveness

This application asks a subject looking into a camera to rotate their head and smile in a
certain way to detect liveness. Source code is available on Microsoft C# 2010 and
higher, Microsoft Visual C++ 2017 and higher, iOS, Android, Java and Python.

12. PassivelLiveness

This application automatically detects the liveness of a subject looking into a camera
(without any assistance from the subject). Source code is available on Microsoft C#
2010 and higher, Microsoft Visual C++ 2017 and higher, iOS, Android, Java and
Python.

13. Advanced

This sample provides source code for .NET wrapper that links facesdk.dll dynamically.
Refer to Using with .NET (C# and VB) for details. The sample also provides source
code for Java, Python, Flutter, React Native and Web Assembly wrappers.

Using FaceSDK with Programming Languages

To access the FaceSDK library functions, you need to use its binary file in your applications.
The specific file depends on the platform:

e Windows applications use facesdk.dl1l

e Linux and Android applications use 1ibfsdk.so

e macOS applications use 1ibfsdk.dylib

e .NET applications use facesdk.NET.dl11l and the appropriate binary file
(facesdk.dll,libfsdk.dylib or 1ibfsdk.so)

e Java applications use facesdk.jar, jna.jar and the appropriate binary file
(facesdk.dll,libfsdk.dylib or 1ibfsdk.so)

e i0OS applicationsuse 1ibfsdk-static.a

e VBG6 applications use facesdk-vb.d11 inadditionto facesdk.dl1l

On Windows, Linux and macOS it is usually recommended to store this file in the directory
where the executable file of your application is located. Alternatively, you may keep the file in:

e the working directory of your application
e the directory specified in the path environment variable of your system: PATH
(Windows), LD LIBRARY PATH (Linux), DYLD LIBRARY PATH (macOS).

You need to include interface header files into your application project in order to use FaceSDK.

Using with .NET (C# and VB)

You need to have .NET Framework 4.0+ on your system.
For Microsoft .NET applications, you need to add the .NET component into your project.
Follow these steps to add the component in Visual Studio 2010+:

e Select Project — Add Reference — Browse
e Choose the file include\ .NET\FaceSDK.NET.d11l
e Add the following statement to the beginning of your application:

using Luxand ‘

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 13

After that you may use the methods of the Luxand.FSDK namespace for general FaceSDK
functions, and Luxand.FSDKCam namespace for webcam-related functions. You may refer
just to FSDK and FSDKCam namespaces if using Luxand is specified.

Once FaceSDK.NET.d11 is added to the references, it will be redistributed automatically
with your application, so no specific deployment actions are required. However you need to
redistribute facesdk.dll (or libfsdk.so on Linux / libfsdk.dylib on
macOS) with your application.

By default, the documentation refers to C/C++ declarations of FaceSDK functions. For
example, the function to detect a face is referred to as FSDK_DetectFace function. To refer
to this function in .NET, replace the FSDK__ prefix with FSDK . namespace. Thus, the reference
to this function becomes FSDK.DetectFace (note that webcam-specific functions are
located in the FSDKCam. namespace; refer to Working with Web Cameras for details).

If you are using an older version of .NET (for example, 2.0, 3.0 or 3.5) or just need a component
for a specific .NET version, you may use the source code available in the
samples\advanced\.NET wrapper directory. The LiveRecognition sample includes
projects for Microsoft C# 2005/2008 and Visual Basic .NET 2005/2008 that are using this
wrapper.

Using Clmage class in .NET

Clmage is a class for Microsoft .NET for easy manipulation of images. CImage encapsulates
an Hlmage handle and provides convenient methods for applying FaceSDK functions to that
image.

To start working with Clmage, just create an instance of it. You can pass a file path, Himage
handle, HBITMAP handle or System.Drawing.Image object to the constructor to load the
corresponding object into the image. Alternatively, call the constructor without parameters to
create an empty image. Refer to the functions FSDK_LoadlmageFromFile,
FSDK_LoadlmageFromHBitmap, FSDK.LoadlmageFromCLRImage and
FSDK_CreateEmptylmage for further details.

A Clmage instance has three properties: ImageHandle, Width and Height. ImageHandle is a
handle of the internal representation of the image encapsulated by the class. Width and Height
properties are the width and height of an image in pixels (see FSDK_GetlmageWidth and
FSDK_GetlmageHeight). If you alter the ImageHandle handle directly (for example, executing
an FSDK. method applied to that image handle), you must update the CImage object by calling
the Clmage.ReloadFromHandle() method. Clmage throws an exception if any FaceSDK
function, called within the Clmage method, has returned an error.

Most CImage methods operating with an image (for example, the Resize() method) return the
processed image as the result.

The Clmage destructor releases ImageHandle, so there is no need to call FSDK.Freelmage
explicitly after the instance has been destroyed.

Note that when you pass an existing image handle to the constructor, it will be freed after the
destruction of the CImage class instance, and become invalid. If you need the original image
handle to be valid after the Clmage class instance is destroyed, consider creating a copy of the
image handle and passing the copy to the CImage constructor.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 14

CImage();
Creates an empty Clmage instance.

Syntax:

FSDK.CImage () ;

Clmage(Int);
Creates a CImage instance from image already loaded to FaceSDK.
Syntax:

FSDK.CImage (int ImageHandle) ; ‘

Parameters:
ImageHandle — the internal handle of an image already loaded to FaceSDK. The destructor
will free the ImageHandle handle.

CImage.ReloadFromHandle();
Updates the internal properties of a Clmage instance in accordance with the ImageHandle.

Syntax:

FSDK.CImage.ReloadFromHandle () ;

Using with C/C++

For Microsoft Visual C++ applications, you need to include the header file
include\C\LuxandFaceSDK.h, and the stub library file facesdk.1lib into your
project.

Follow these steps to add the library to your project:

e Copy include\C\LuxandFaceSDK.h into the directory of your project

e For 32-bit applications, copy bin\win32\facesdk.dll and
bin\win32\facesdk.1lib into the output directory of your project

e For 64-bit applications, copy bin\win64\facesdk.dl1l and
bin\win64\facesdk.1lib into the output directory of your project

e Choose Project Properties — Linker — Input — Additional Dependencies, and add
facesdk. 1ib string

e Choose Project Properties — Linker — General — Additional Library Directories
Dependencies, and add $ (outDir) string (a reference to the output directory)

e Add the following statement to the beginning of your application:

‘include "LuxandFaceSDK.h"

The output directory $ (OutDir) typically refers to Debug\ or Release)\ in the directory
of your solution. You may change it in the Configuration Properties — General of your project.
You may also choose another directory to store the .lib file, but it is recommended to keep
facesdk.d11l in the directory where the executable file of your application is located.

You need to redistribute the file facesdk.d11 with your application.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 15

Using with Delphi
For Delphi applications, put facesdk.d11 into the working directory of your application and
use the include\Delphi\LuxandFaceSDK.pas unitin your project.

You need to redistribute the file facesdk.d11 with your application.

Using with Java

You need JDK 1.6 (or OpenJDK 1.6) to use FaceSDK with Java. The FaceSDK Java wrapper
uses JNA (all information about JNA and the actual version can be found at
https://github.com/twall/jna, but jna.jar is included in the distribution for your convenience).
The FaceSDK java wrapper works with any IDE, but only Netbeans sample projects are
provided with the distribution.

To use FaceSDK in your Netbeans project, follow these steps:

1) Add FaceSDK .jar (include\Java\FaceSDK. jar) and jna.jar
(include\Java\jna.jar) to the Librariessection of the project.
2) Add the following imports to your source code:

import Luxand.*;
import Luxand.FSDK.*;
import Luxand.FSDKCam. *;

3) Put the appropriate facesdk binaries (facesdk.dll, libfdsk.so or
libfdsk.dylib) in the project directory (or to the /usr/1ib directory if using
OpenJDK).

You need to redistribute the FaceSDK binaries(facesdk.d11, 1ibfdsk.so or
libfdsk.dylib)aswellas FaceSDK.jar and jna.jar with your application.

Using with Cocoa

If you are using Cocoa to write an application in Xcode, make sure that your source code files
(which use FaceSDK) have the . mm extension, so they are compiled as Objective-C++. If the
files have the .m extension, they are compiled as Objective-C and cannot use FaceSDK.

Using with VisualBasic 6.0

For Visual Basic 6.0 applications, put the Visual Basic wrapper (bin\win32\FaceSDK-
VB.dl1l1l) into the project directory and add LuxandFaceSDK.bas
(include\VB6\LuxandFaceSDK.bas) module to your project (Select Project — Add
module — Existing and choose a module location). Also you need to put facesdk.d11 into
the application working directory.

Note that Tracker API functions employ the Currency data type to store 64-bit integer values.
You need to redistribute both FaceSDK-VB.dll and facesdk.dll with your
application.

Visual Basic 6.0 was released in 1998 and cannot fully support some modern operating systems.
Hence we cannot guarantee that the samples written in Visual Basic 6.0 will work seamlessly
on any Microsoft Windows versions newer than Windows XP.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 16

https://github.com/twall/jna

Using with iOS

Refer to the Using with Cocoa section. In Objective-C you should use the C++ syntax within
your program.

To enable FaceSDK support in your Xcode iOS project, add bin/i0S/1libfsdk-
static.aand include/C/LuxandFaceSDK.h to your project.

Using with Android

For Android Studio you need to copy the directories armeabi-v7a and arm64-v8a contained in
bin/android/ tothe app/src/main/jniLibs directory of your project. You also need
to add the include/android/FSDK. java file to the
app/src/main/java/com/luxand directory.

For Eclipse ADT you need to copy the subdirectories contained in bin/android/ to the
libs/ directory of your project. You also need to add the
include/android/FSDK. java filetothe src/com/luxand/ directory.

The syntax of some functions on Android is different from the corresponding Java syntax due
to the usage of JNI instead of INA.

Note: Only arm64 (arm64-v8a), armv7 (armeabi-v7a), x86 and x86_64 architectures are
supported by FaceSDK on the Android platform.

The FSDK class is provided in the binary code form only. Therefore, the “com.luxand” package
name of this class cannot be changed.

Using with Python
To use FaceSDK, you must have Python 2.7 or later installed.

Copy the Python wrapper to your working directory, or place it in the python/1ib/fsdk
directory.

For windows users: If using a global path folder, also copy win.py to the same wrapper
directory.

To start working with FaceSDK add the import: from fsdk import FSDK

Unlike other wrappers, all functions in the Python wrapper never return error code of execution,
instead the result of function is returned or None. In case of an error a corresponding exception
IS raised.

Consult the sample code in the samples\advanced\Python directory for detailed usage examples.

Using with Flutter

Please refer to the sample in the samples\advanced\Flutter directory and follow the instructions
in the readme.md file within that directory.

Using with React Native

Please refer to the sample in the samples\advanced\react-native directory and follow the
instructions in the readme.md file within that directory.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 17

Using with Web Assembly

Please refer to the samples in the samples\advanced\WebAssembly directory.

Unicode support

The library supports Unicode filenames on the Windows platform. If you work with file names
in the Unicode character set, use functions FSDK_LoadlmageFromFileW and
FSDK_SavelmageToFileW to open and save files.

Redistributables

The following files may be redistributed with your application:

bin\win32\facesdk.dl1 (for 32-bit systems)

Windows bin\win64\facesdk.dl1l (for 64-bit systems)
bin\win32\FaceSDK-VB.d11 (for Visual Basic 6.0 applications)
bin\linux x86\1libfsdk.so (for 32-bit systems)
bin\linux x86 64\libfsdk.so (for 64-bit systems)

Linux bin\linux armv?7 (for armv7 systems)
bin\linux armé64 (for arm64 systems)
bin\osx x86 64\1libfsdk.dylib

macOS - =

bin\osx arm64\libfsdk.dylib
bin\android\arm64-v8al\libfsdk.so
Android bin\android\armeabi-v7a\libfsdk.so
bin\android\x86\1libfsdk.so
bin\android\x86 64\libfsdk.so

i0S NONE (static libraries)
.NET include\ .NET\FaceSDK.NET.d1l1l
Java (on include\Java\FaceSDK. jar
Windows / Linux | include\Java\jna.jar
/ macQS)
Thermal face thermal.bin (the detection model used in Thermal
detection samples)

Usage Scenarios
The library usage level depends on the functionality required from Luxand FaceSDK.

If you work with video, consider using Tracker API, as the API provides high-level functions
to recognize subjects and tag them with names, to track their faces and facial features, and to
recognize gender, age and facial expressions. The usage scenario for Tracker API can be found
in the Usage Scenario section of the Tracker API chapter.

Otherwise, the typical scenario is as follows:

1. Activate FaceSDK by calling up the ESDK_ActivateLibrary function with the key sent
by Luxand, Inc.

2. Initialize FaceSDK by calling up the ESDK _Initialize function.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 18

6.

Load images either from a file, a buffer or the HBITMAP handle
(FSDK_LoadlmageFromFile, FSDK_L oadlmageFromBuffer,
FSDK_LoadlmageFromHBitmap functions).

Set face detection parameters if needed (FSDK_SetFaceDetectionParameters,
FSDK_SetFaceDetectionThreshold).

Use FaceSDK functions:

e Detect a face (FSDK_DetectFace) or multiple faces
(FESDK_DetectMultipleFaces) in an image

e Detect facial features if needed (ESDK_DetectFacialFeatures,
FSDK_DetectFacialFeaturesinRegion)

e Extract a face template from the image (FSDK_GetFaceTemplate,
FSDK_GetFaceTemplatelnRegion,
FSDK_GetFaceTemplateUsingFeatures)

e Match the face templates (FSDK_MatchFaces) and acquire the facial
similarity level

e Tofind out if a face belongs to the same person, calculate the matching
threshold at a given FAR or FRR rate
(ESDK_GetMatchingThresholdAtFAR and
FSDK_GetMatchingThresholdAtFRR functions).

Finalize the FaceSDK library (FSDK_Finalize function).

To work with a camera, follow these steps*:

1.

2
3.
4.
5

S

Initialize camera capturing (FSDK _InitializeCapturing).

Get a list of web cameras available in the system (FSDK_GetCameraL ist)

Get list of video formats supported by the web camera (FSDK_GetVideoFormatL.ist).
Set the desired video format for the chosen web camera (FSDK_SetVideoFormat).
Open a web camera (FSDK_OpenVideoCamera) or an [P camera
(FSDK_OpenlPVideoCamera).

Grab frames (FSDK_GrabFrame) in a loop, displaying them and detecting/recognizing
faces.

Close video camera (FSDK_CloseVideoCamera).

Delete the list of video formats (FSDK_FreeVideoFormatL ist).

Delete the list of web cameras (FSDK_FreeCameraL ist).

0 Finalize capturing (FESDK_FinalizeCapturing).

“If you work with an IP camera, you should not follow steps 2, 3, 4, 8 and 9.

Library Activation

FaceSDK is a copy-protected library, and must be activated with a license key before its use.
You need to pass the license key received from Luxand, Inc. to the FSDK_ActivateLibrary
function before initializing Luxand FaceSDK. Almost all FaceSDK functions will return the
FSDKE_NOT_ACTIVATED error code in case the library is not activated. To retrieve your
license information, call FSDK_GetLicenselnfo. This function returns the name the library is
licensed to. You may need to use the FSDK_GetHardware 1D function to obtain your hardware
ID if your license is restricted to one machine only. Additionally, you can find out hardware 1D

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 19

by running the hardwareid program (ShowHardwareID.exe for Windows), which is

located in the bin directory.

To get a temporary evaluation key from Luxand, Inc., run License Key Wizard from the Start

— Luxand — FaceSDK menu.You may also request this key at
https://luxand.com/facesdk/requestkey/.

FSDK_GetHardware_ID Function
Generates a Hardware ID code.
C++ Syntax:

| int FSDK_GetHardware ID(char* HardwarelID);

Delphi Syntax:

‘function FSDK GetHardware ID(HardwareID: PChar): integer;

C# Syntax:

‘int FSDK.GetHardwarelID (out string HardwarelID);

VB Syntax:

Function FSDKVB GetHardwarelID (ByRef HardwareID As Byte) As
Long

Java Syntax:

int FSDK.GetHardware ID(String HardwareID[]);

iOS and Android: not implemented.

Parameters:

HardwareID — address of the null-terminated string for receiving the Hardware ID code.
Return Value:

Returns FSDKE_OK if successful.

Python Syntax:

def FSDK.GetHardware ID() -> str;

Return Value:
A Hardware 1D code.

FSDK_ActivateLibrary Function

Activates the FaceSDK library.
C++ Syntax:

int FSDK ActivatelLibrary(char* LicenseKey);

Delphi Syntax:

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

20

https://luxand.com/facesdk/requestkey/

‘function FSDK Activatelibrary(LicenseKey: PChar): integer;

C# Syntax:

‘int FSDK.ActivateLibrary(out string LicenseKey); ‘

VB Syntax:

Function FSDKVB Activatelibrary (ByVal LicenseKey As String) As
Long

Java and Android Syntax:

int FSDK.ActivatelLibrary(String LicenseKey) ;

Parameters:

LicenseKey— License key you received from Luxand, Inc.
Return Value:

Returns FSDKE_OK if the registration key is valid and not expired.

Python Syntax:

def FSDK.ActivatelLibrary(license key: str);

Return Value:
None
Exceptions:

FSDK.NotActivated if key is invalid or expired.
This exception is also raised from all FSDK functions if library is not activated.

FSDK_GetLicenselnfo Function

Retrieves license information.
C++ Syntax:

int FSDK GetLicenselInfo(char* LicenselInfo); ‘

Delphi Syntax:

‘function FSDK GetLicenselInfo(LicenseInfo: PAnsiChar): integer; ‘

C# Syntax:

int FSDK.GetLicenseInfo (out string LicenselInfo); ‘

VB Syntax:

Function FSDKVB GetLicenselInfo (ByRef LicenselInfo As Byte) As
Long

Java and Android Syntax:

int FSDK.GetLicenseInfo (String LicenseInfol]):;

Parameters:

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 21

LicenseInfo — address of the null-terminated string for receiving the license information.
This variable should be allocated no less than 256 bytes of memory.

Return Value:
Returns FSDKE_OK if successful.

Python Syntax:

def FSDK.GetLicenseInfo() —-> str;

Return Value:

The license information string.

Initialization

FSDK _Initialize Function

Initializes the FaceSDK library. Should be called before using of any face detection functions.
C++ Syntax:

‘int FSDK Initialize (char* DataFilesPath);

Delphi Syntax:

‘function FSDK Initialize (DataFilesPath: PChar): integer;

C# Syntax:

‘int FSDK.InitializeLibrary (),

VB Syntax:

Function FSDKVB Initialize (ByRef DataFilesPath As Byte) As
Long

Java and Android Syntax:

int FSDK.Initialize () ;

Parameters:

DataFilesPath — pointer to the null-terminated string specifying the path where
facesdk.dll is stored. An empty string means the current directory. (Note: the parameter is not
used since FaceSDK 1.8; an empty string might be passed as this parameter.)

Return Value:
Returns FSDKE_OK if successful or FSDK_10_ERROR if an 1/O error occurs.

Python Syntax:

def FSDK.Initialize (datafFilesPath='");

Return Value:

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 22

None

FSDK_Finalize Function

Finalizes the FaceSDK library. Should be called when the application is exited.
C++ Syntax:

‘int FSDK Finalize();

Delphi Syntax:

‘function FSDK Finalize: integer;

C# Syntax:

‘int FSDK.FinalizeLibrary () ;

VB Syntax:

‘Function FSDKVB Finalize () As Long

Java and Android Syntax:

‘int FSDK.Finalize () ;

Return Value:
Returns FSDKE_OK if successful.

Python Syntax:

def FSDK.Finalize();

Return Value:
None

Configuration

FSDK_SetParameter Function

Sets a parameter for FaceSDK. See the FaceSDK Parameters section for details.

Note that, to set Tracker parameters, the FSDK_SetTrackerParameter or
FSDK_SetTrackerMultipleParameters function should be used instead.

C++ Syntax:

int FSDK SetParameter (const char * ParameterName, const char *
ParameterValue) ;

Delphi Syntax:

function FSDK SetParameter (ParameterName, ParameterValue:
PAnsiChar) : integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 23

C# Syntax:

int FSDK.SetParameter (string ParameterName, string
ParameterValue) ;

VB Syntax:

Function FSDKVB SetParameter (ByVal ParameterName As String,
ByVal ParameterValue As String) As Long

Java and Android Syntax:

int FSDK.SetParameter (String ParameterName, String
ParameterValue) ;

Parameters:

ParameterName —name of the parameter to be set.
ParameterValue — value of the parameter.

Return Value:
Returns FSDKE_OK if successful.

Python Syntax:

def FSDK.SetParameter (param name: str, param value);

Return Value:

None

Note:

param_value can be one of the types: str, int, float or bool.

FSDK_SetParameters Function

Sets multiple parameters for FaceSDK.The parameters and their values are specified in the
following format:

"Parameterl=Valuel [; Parameter2=vValue2[;..]]1"

See the FaceSDK Parameters section for details.

C++ Syntax:

int FSDK SetParameters(const char * Parameters, int *
ErrorPosition);

Delphi Syntax:

function FSDK SetParameters (Parameters: PAnsiChar;
ErrorPosition: PInteger): integer;

C# Syntax:

int FSDK.SetParameters (string Parameters, ref int
ErrorPosition);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 24

VB Syntax:

Function FSDKVB SetParameters (ByVal Parameters As String,
ByRef ErrorPosition As Long) As Long

Java and Android Syntax:

int FSDK.SetParameters (String Parameters, IntByReference
ErrorPosition);

Parameters:

Parameters — string containing the parameters and the corresponding values to be set.
ErrorPosition — pointer to the integer variable that will receive the position of the
character that caused the syntax error in the string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_SYNTAX_ ERROR and sets the value of
the ErrorPosition variable in case of syntax error.

Example:

int err = 0;

FSDK SetParameters ("FaceDetectionModel=thermal.bin; TrimOutOfSc
reenFaces=false; TrimFacesWithUncertainFacialFeatures=false",
&err) ;

Python Syntax:

def FSDK.SetParameters (values='"', **kwargs):;

Parameters:

values — string containing the parameters and the corresponding values to be set separated
by semicolon.
kwargs — keyword arguments as parameters with their values.

Return Value:

None

Exceptions:

FSDK.SyntaxError Or FSDK.InvalidArgument if parameter(s) cannot be set.

Examples:

FSDK SetParameters ("FaceDetectionModel=thermal.bin; TrimOutOfSc
reenFaces=false; TrimFacesWithUncertainFacialFeatures=false”);

FSDK SetParameters (FaceDetectionModel = ”“thermal.bin”,
TrimOutOfScreenFaces = False,
TrimFacesWithUncertainFacialFeatures = False);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 25

FaceSDK Parameters

FaceSDK allows for setting a number of parameters with the FSDK_SetParameter or
FSDK_SetParameters function.

Face detection parameters

Note that the Tracker APl does not use the face detection parameters set with
FSDK_SetParameter or FSDK_SetParameters. Instead, you should use
FSDK_SetTrackerParameter or FSDK_SetTrackerMultipleParameters.

Also note that additional face detection parameters can be set by calling the
FSDK _SetFaceDetectionParameters and FSDK _SetFaceDetectionThreshold functions.

FaceDetectionModel — a path to the face detection model file to load. You can use it to
load thermal face detection model (see the Thermal sample application). The value “default”
can be passed to switch back to the default visual face detection model.

TrimOutOfScreenFaces - determines whether faces that go beyond the edges of the
image should be excluded from face detection. The default value is True (such faces aren’t
detected). Use True when you extract face templates from the detected faces and match them.
Setting the value to False allows you to detect faces in a larger number of cases, but such
faces may yield higher false acceptance rates when matching faces.

TrimFacesWithUncertainFacialFeatures — determines whether faces with
uncertain facial features should not be detected. The default value is True (faces with
uncertain facial features aren’t detected). Should be set to False for a thermal face detection
model. Use True when you extract face templates from the detected faces and match them.
Setting the value to False allows you to detect faces in a larger number of cases, but such
faces may yield higher false acceptance rates when matching faces.

Working with Images
Images are represented as the HImage data type.
C++ Declaration:

typedef int HImage;‘

C# Declaration:

int Image ‘

Delphi Declaration:

HImage = integer;
PHImage = "HImage;

Java and Android Declaration:

class HImage {
protected int himage;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 26

BE |

Python Declaration:

‘class Image (ctypes.Structure) ; ‘

FaceSDK provides a number of functions to load images to the internal representation from
files, buffers or HBITMAP handles and to save images from the internal representation to files,
buffers and HBITMAP handles. Each FSDK_LoadlmageFromXXXX function creates a new
HIimage handle, which can be deleted using the ESDK_Freelmage function.

Note that when you perform multiple stages of recognition on large images (for example, when
you first detect a face, and then create its template using FSDK_GetFaceTemplatelnRegion),
consider first resizing the image to a smaller size to speed up operations. Note that you must
resize the image to dimensions no smaller than the InternalResizeWidth parameter of the
FSDK_SetFaceDetectionParameters function if you perform face detection, in order to keep
the same accuracy of face detection.

FSDK_CreateEmptylmage Function

Creates a handle of an empty image. You don’t need to call this function before calling
FSDK_LoadImageFromXXXX since these functions already create the HImage handle. Should
be called before using the FSDK_Copylmage, FSDK_Resizelmage, FSDK_Rotatelmage,
FSDK_RotatelmageCenter, FSDK_Rotatelmage90, FSDK_Mirrorimage, FSDK_CopyRect,
FSDK_CopyRectReplicateBorder functions to create the handle of the destination image.

C++ Syntax:

‘int FSDK CreateEmptyImage (HImage* Image) ;

Delphi Syntax:

‘function FSDK CreateEmptyImage (Image: PHImage): integer;

C# Syntax:

‘int FSDK.CreateEmptyImage (refint Image) ,

VB Syntax:

‘Function FSDKVB CreateEmptyImage (ByRef Image As Long) As Long

Java and Android Syntax:

‘int FSDK.CreateEmptyImage (HImage Image) ;

Parameters:

Image — pointer to HImage for creating the image handle.
Return Value:

Returns FSDKE_OK if successful.

Python Syntax:

‘def FSDK.CreateEmptyImage () -> Image;

Return Value:
An empty image.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 27

FSDK_LoadimageFromFile Function
Loads the image from a file and provides the internal handle of this image.
C++ Syntax:

int FSDK LoadImageFromFile (HImage* Image, char* FileName);

Delphi Syntax:

function FSDK LoadImageFromFile (Image: PHImage; FileName:
PAnsiChar) : integer;

C# Syntax:

int FSDK.LoadImageFromFile (ref int Image, string FileName)

VB Syntax:

Function FSDKVB LoadImageFromFile (ByRef Image As Long, ByVal
FileName As String) As Long

Java and Android Syntax:

int FSDK.LoadImageFromFile (HImage Image, String FileName);

Clmage Syntax:

int FSDK.CImage (String FileName) ;

Parameters:

Image — pointer to Himage for receiving the loaded image handle.
FileName — filename of the image to be loaded. FaceSDK supports the JPG, PNG and BMP
file formats.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.LoadImageFromFile (fileName: str) -> Image;

// constructor

Image (fileName: str) -> Image;

@staticmethod

def Image.FromFile (fileName: str) -> Image;

Return Value:

An image loaded from file.
Exceptions:
FSDK.FileNotFound

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 28

FSDK.BadFileFormat
FSDK.UnsupportedImageExtension
FSDK.IOError

FSDK_LoadlimageFromFileW Function

Loads the image from a file path in the Unicode character set and provides the internal handle

of this image. The function is available only on Windows platforms.
C++ Syntax:

int FSDK LoadImageFromFileW (HImage* Image, wchar t* FileName) ; ‘

Delphi Syntax:

function FSDK LoadImageFromFileW (Image: PHImage; FileName:
PWideChar) : integer;

C# Syntax:

int FSDK.LoadImageFromFileW (ref int Image, string FileName)

Java Syntax:

int FSDK.LoadImageFromFileW (HImage Image, String FileName);

Parameters:
Image — pointer to Himage for receiving the loaded image handle.

FileName — filename of the image to be loaded. FaceSDK supports the JPG, PNG and BMP

file formats.

Return Value:

Returns FSDKE_OK if successful.

This function is not available in Visual Basic 6.0.

FSDK_SavelmageToFile Function

Saves an image to a file. When saving to .jpg files, you can set the quality of JPEG compression

using the ESDK_SetJpegCompressionQuality function.

C++ Syntax:

int FSDK SavelmageToFile (HImage Image, char* FileName) ;

Delphi Syntax:

function FSDK SavelmageToFile (Image: HImage; FileName:
PAnsiChar): integer;

C# Syntax:

int FSDK.SavelImageToFile (int Image, string FileName);

VB Syntax:

Function FSDKVB SavelmageToFile (ByVal Image As Long, ByVal
FileName As String) As Long

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

29

Java and Android Syntax:

‘int FSDK.SaveImageToFile (HImage Image, String FileName) ;

Clmage Syntax:

‘void FSDK.CImage.Save (string FileName) ;

Parameters:

Image — internal handle of an image to be saved.

FileName — name of file the image will be saved to. FaceSDK saves images in the BMP,
PNG or JPG file format. The format to use is recognized by the extension specified in the
FileName parameter.

Return Value:
Returns FSDKE_OK if successful.

Example

int imgl;

FSDK Initialize("");
FSDK LoadImageFromFile (&imgl, "test.bmp"); // load .bmp file
FSDK SaveImageToFile (imgl, "test.jpg"); // save as .Jjpg

Python Syntax:

def FSDK.SaveImageToFile (image: Image, fileName: str, quality:
int = None);

def Image.SaveToFile(fileName: str, quality: int = None);

Return Value:

None

Exceptions:
FSDK.CannotCreateFile
FSDK.IOError

Example

from fsdk import FSDK

FSDK.Initialize()

img = FSDK.Image ("test.bmp") # load .bmp file

if ‘quality’ is not defined the default or previously set
value 1is used

img.SaveToFile (“test.jpg", quality = 50) # save as .jpg

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 30

FSDK_SavelmageToFileW Function

Saves an image to a file path in the Unicode character set. The function is available only on
Windows platforms. When saving to .jpg files, you can set the quality of the JPEG compression
using the FSDK_SetJpegCompressionQuality function.

C++ Syntax:

int FSDK SavelImageToFileW (HImage Image, wchar t* FileName);

Delphi Syntax:

function FSDK SavelmageToFileW (Image: HImage; FileName:
PWideChar) : integer;

C# Syntax:

int FSDK.SavelImageToFileW (int Image, string FileName) ; ‘

Java Syntax:

int FSDK.SavelImageToFileW (HImage Image, String FileName) ; ‘

Parameters:

Image — internal handle of an image to be saved.

FileName — name of file the image will be saved to. FaceSDK saves images in the BMP,
PNG or JPG file format. The format to use is recognized by the extension specified in the
FileName parameter.

Return Value:
Returns FSDKE_OK if successful.
The function is not available in Visual Basic 6.0

FSDK_LoadimageFromBuffer Function

Loads an image from a buffer and provides the internal handle of this image. The function
suggests that the image data is organized in a top-to-bottom order, and the distance between
adjacent rows is ScanLine bytes (for example, in the 24-bit image, the ScanLine value might
be 3*Width bytes if there is no spacing between adjacent rows). The following image modes
are supported:

Mode name Meaning
FSDK_IMAGE_GRAYSCALE_8BIT 8-bit grayscale image
FSDK_IMAGE_COLOR_24BIT 24-bit color image (R, G, B order)

32-bit color image with alpha channel (R, G, B, A

FSDK_IMAGE_COLOR_32BIT
- - - order)

C++ Syntax:

int FSDK LoadImageFromBuffer (HImage* Image, unsigned char*
Buffer, int Width, int Height, int ScanLine, FSDK IMAGEMODE
ImageMode) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 31

Delphi Syntax:

function FSDK LoadImageFromBuffer (Image: PHImage; var Buffer;
Width, Height: integer; ScanLine: integer; ImageMode:
FSDK IMAGEMODE) : integer;

C# Syntax:

int FSDK.LoadImageFromBuffer (ref int Image, bytel[] Buffer, int
Width, int Height, int ScanLine, FSDK IMAGEMODE ImageMode) ;

VB Syntax:

Function FSDKVB LoadImageFromBuffer (ByRef Image As Long, ByRef
Buffer As Byte, ByVal Width As Long, ByVal Height As Long,
ByVal ScanLine As Long, ByVal ImageMode As FSDK IMAGEMODE) As
Long

Android Syntax:

int FSDK.LoadImageFromBuffer (HImage Image, byte Buffer[], int
width, int Height, int ScanLine, FSDK IMAGEMODE ImageMode) ;

Java Syntax:

int FSDK.LoadImageFromBuffer (HImage Image, byte Buffer[], int
Width, int Height, int ScanLine, int ImageMode);

Parameters:

Image — pointer to Himage for receiving the loaded image handle.
Buffer - pointer to buffer containing image data.

width —width of an image in pixels.

Height —height of an image in pixels.

ScanLine - distance between adjacent rows in bytes.
ImageMode —mode of an image.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.LoadImageFromBuffer (buffer: bytes, width: int,
height: int, scanLine: int, imageMode: int) -> Image;

@staticmethod

def Image.FromBuffer (buffer: bytes, width: int, height: int,
scanLine: int, colorMode: int) -> Image;

Return Value:
An image loaded from bufrfer.
Note:

The constants FSDK.IMAGE GRAYSCALE 8BIT, FSDK.IMAGE COLOR 24BIT or
FSDK.IMAGE COLOR 32BIT are used as imageMode argument .

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 32

FSDK_LoadIimageFromJpegBuffer Function

Loads an image from a buffer containing JPEG data, and provides the handle of this image.
C++ Syntax:

int FSDK LoadImageFromJpegBuffer (HImage* Image, unsigned
char* Buffer, unsigned int BufferLength) ;

Delphi Syntax:

function FSDK LoadImageFromJpegBuffer (Image: PHImage; var
Buffer; BufferLength: integer): integer;

VB Syntax:

Function FSDKVB LoadImageFromJpegBuffer (ByRef Image As Long,
ByRef Buffer As Byte, ByVal BufferLength As Long) As Long

Android Syntax:

int FSDK.LoadImageFromJpegBuffer (HImage Image, byte Bufferl[],
int BufferLength);

Parameters:

Image — pointer to Himage for receiving the loaded image handle.
Buffer - pointer to the buffer containing the image data in JPEG format (usually loaded

from a JPEG file).
BufferLength — size of buffer in bytes.

Return Value:

Returns FSDKE_OK if successful.

This function is not available in .NET and Java.
Python Syntax:

def FSDK.LoadImageFromJpegBuffer (buffer: bytes, bufferLength:
int = None) -> Image;

Return Value:

An image loaded from jpeg buffer.
Exception:

FSDK.IOError

Note:

If bufferLength is not defined, an entire buffer is used.

FSDK_LoadlmageFromPngBuffer Function

Loads an image from a buffer containing PNG data and provides the handle of this image.
C++ Syntax:

int FSDK LoadImageFromPngBuffer (HImage* Image, unsigned char*
Buffer, unsigned int BufferLength);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 33

Delphi Syntax:

function FSDK LoadImageFromPngBuffer (Image: PHImage; var
Buffer; BufferLength: integer): integer;

VB Syntax:

Function FSDKVB LoadImageFromPngBuffer (ByRef Image As Long,
ByRef Buffer As Byte, ByVal BufferLength As Long) As Long

Android Syntax:

int FSDK.LoadImageFromPngBuffer (HImage Image, byte Bufferl[],
int BufferLength);

Parameters:

Image — pointer to HImage for receiving the loaded image handle.

Buffer —pointer to the buffer containing the image data in PNG format (usually loaded from
a PNG file).

BufferLength — size of buffer in bytes.

Return Value:

Returns FSDKE_OK if successful.

The function is not available in .NET and Java.
Python Syntax:

def FSDK.LoadImageFromPngBuffer (buffer: bytes, bufferLength:
int = None) -> Image;

Return Value:
An image loaded from png buffer.

Exception:
FSDK.IOError

Note:
If bufferLength is not defined, an entire buffer is used.

FSDK_GetIimageBufferSize Function

Returns the size of the buffer required to store an image.
C++ Syntax:

int FSDK GetImageBufferSize (HImage Image, int * BufSize,
FSDK IMAGEMODE ImageMode) ;

Delphi Syntax:

function FSDK GetImageBufferSize (Image: HImage; BufSize:
PInteger; ImageMode: FSDK IMAGEMODE) : integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 34

C# Syntax:

int FSDK.GetImageBufferSize (intImage, ref int BufSize,
FSDK IMAGEMODE ImageMode) ;

VB Syntax:

Function FSDKVB GetImageBufferSize (ByVal Image As Long, ByRef
BufSize As Long, ByVal ImageMode As FSDK IMAGEMODE) As Long

Android Syntax:

int FSDK.GetImageBufferSize (HImage Image, int BufSizel],
FSDK IMAGEMODE ImageMode) ;

Java Syntax:

int FSDK.GetImageBufferSize (HImage Image, int BufSizel],
intImageMode) ;

Parameters:

Image — internal handle of an image.
BufSize — pointer to an integer variable to store the calculated buffer size.
ImageMode - desired image mode of a buffer.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.GetImageBufferSize (image: Image, imageMode: int) ->
int;

Return Value:
The size of the buffer required to store an image.

FSDK_SavelmageToBuffer Function

Saves an image to a buffer in the desired image mode. Refer to the
FSDK _LoadlmageFromBuffer function description to read more about image modes.

C++ Syntax:

int FSDK SavelImageToBuffer (HImage Image, unsigned char*
Buffer, FSDK IMAGEMODE ImageMode) ;

Delphi Syntax:

function FSDK SavelImageToBuffer (Image: HImage; var Buffer;
ImageMode: FSDK IMAGEMODE) : integer;

C# Syntax:

int FSDK.SavelImageToBuffer (intImage, out byte[]Buffer,
FSDK IMAGEMODE ImageMode) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 35

VB Syntax:

Function FSDKVB SavelmageToBuffer (ByVal Image As Long, ByRef
Buffer As Byte, ByVal ImageMode As FSDK IMAGEMODE) As Long

Android Syntax:

int FSDK.SavelmageToBuffer (HImage Image, byte Bufferl[],
FSDK IMAGEMODE ImageMode) ;

Java Syntax:

int FSDK.SavelImageToBuffer (HImage Image, byte Bufferl],
int ImageMode) ;

Parameters:

Image — internal handle of an image to be saved.
Buffer - pointer to the buffer containing the image data.
ImageMode - desired mode an image will be saved in.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def Image.ToBuffer (colorMode: int) -> bytes;

Return Value:

A buffer containing raw image data.

FSDK_LoadlimageFromHBitmap Function

Loads the image from an HBITMAP handle and provides the internal handle of this image.
C++ Syntax:

int FSDK LoadImageFromHBitmap (HImage* Image, HBITMAP*
BitmapHandle) ;

Delphi Syntax:

function FSDK LoadImageFromHBitmap (Image: PHImage;
BitmapHandle: HBitmap): integer;

C# Syntax:

int FSDK.LoadImageFromHBitmap (ref int Image, IntPtr
BitmapHandle) ;

VB Syntax:

Function FSDKVB LoadImageFromHBitmap (ByRef Image As Long,
ByVal BitmapHandle As Integer) As Long

Clmage Syntax:

FSDK.CImage (IntPtr BitmapHandle) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 36

Parameters:

Image — pointer to HImage for receiving the loaded image handle.
BitmapHandle — handle of the image to be loaded.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.LoadImageFromHBitmap (bitmapHandle: HBITMAP) -> Image;

// constructor

Image (bitmapHandle: HBITMAP) -> Image;

Return Value:
An image created from HBITMAP Windows handle.

FSDK_SavelmageToHBitmap Function
Creates an HBITMAP handle containing the image.
C++ Syntax:

int FSDK SavelImageToHBitmap (HImage Image, HBITMAP*
BitmapHandle) ;

Delphi Syntax:

function FSDK SavelImageToHBitmap (Image: HImage; BitmapHandle:
PHBitmap) : integer;

C# Syntax:

int FSDK.SavelmageToHBitmap (int Image, ref IntPtr
BitmapHandle) ;

VB Syntax:

Function FSDKVB SavelImageToHBitmap (ByVal Image As Long, ByRef
BitmapHandle As Integer) As Long

Clmage Syntax:

IntPtr FSDK.CImage.GetHbitmap () ;

Parameters:

Image - internal handle of the image to be saved to HBITMAP.
BitmapHandle — pointer to HBITMAP the created HBITMAP handle will be saved to.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.SaveImageToHBitmap (image: Image) -> HBITMAP;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 37

def Image.GetHBitmap () -> HBITMAP;

Return Value:
An HBITMAP Windows handle containg the image.

FSDK.LoadlmageFromCLRImage Function

Loads the image from the System.Drawing.Image object and provides the internal handle of

this image.
C# Syntax:

int FSDK.LoadImageFromCLRImage (ref int Image,
System.Drawing.Image ImageObject);

Clmage Syntax:

FSDK.CImage (System.Drawing.Image ImageObject)

.
4

Parameters:

Image — reference to HImage for receiving the loaded image handle.

ImageObject — object of the image to be loaded.

Return Value:
Returns FSDKE_OK if successful.

FSDK.SavelmageToCLRImage Function

Creates a System.Drawing.Image object containing the image.
C# Syntax:

int FSDK.SavelmageToCLRImage (int Image, ref
System.Drawing.Image ImageObject);

Clmage Syntax:

System.Drawing.Image FSDK.CImage.ToCLRImage ()

.
4

Parameters:

Image - internal handle of the image to be saved to System.Drawing.Image.
ImageObject— reference to System.Drawing.Image object the image will be saved to.

Return Value:
Returns FSDKE_OK if successful.

FSDK.LoadlmageFromAWTImage Function

Loads the image from the java.awt.Image object and provides the internal handle of this image.

Java Syntax:

int FSDK.LoadImageFromAWTImage (HImage Image,
SourceImage, int ImageMode) ;

java.awt.Image

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

38

Parameters:

Image — Hlmage for receiving the loaded image.

SourceImage — java.awt.Image object of the image to be loaded.

ImageMode - mode of an image. (See FSDK_LoadlmageFromBuffer for more information
about image modes.)

Return Value:
Returns FSDKE_OK if successful.

FSDK.SavelmageToAWTImage Function

Creates a java.awt.Image object containing the image.
Java Syntax:

int FSDK.SavelmageToAWTImage (HImage Image, java.awt.Image
DestImage[], int ImageMode) ;

Parameters:

Image - internal handle of the image to be saved to System.Drawing.Image.
DestImage [] — java.awt.Image object the image will be saved to.
ImageMode - desired mode an image will be saved in.

Return Value:
Returns FSDKE_OK if successful.

FSDK_SetJpegCompressionQuality
Sets the quality of the JPEG compression to use in the ESDK_SavelmageToFile function.

C++ Syntax:

int FSDK SetJpegCompressionQuality (int Quality);

Delphi Syntax:

function FSDK SetJpegCompressionQuality(Quality: integer):
integer;

C# Syntax:

int FSDK.SetdpegCompressionQuality(int Quality);

VB Syntax:

Function FSDKVB SetJpegCompressionQuality (ByVal Quality As
Long) As Long

Java and Android Syntax:

int FSDK.SetJpegCompressionQuality(int Quality);

Parameters:
Quality - quality of JPEG compression. Varies from 0 to 100.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 39

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.SetdJpegCompressionQuality(quality: int);

Return Value:
None.

FSDK_GetimageWidth Function

Returns the width of an image.
C++ Syntax:

int FSDK GetImageWidth (HImage SourcelImage, int* Width) ;

Delphi Syntax:

function FSDK GetImageWidth (Sourcelmage: HImage; Width:
PInteger): integer;

C# Syntax:

int FSDK.GetImageWidth (int SourceImage, ref int Width);

VB Syntax:

Function FSDKVB GetImageWidth (ByVal SourcelImage As Long, ByRef
Width As Long) As Long

Java and Android Syntax:

int FSDK.GetImageWidth (HImage SourcelImage, int Width[]);

Clmage Syntax:

int FSDK.CImage.Width;

Parameters:

SourceImage — internal handle of an image.
wWidth — pointer to an integer variable to store the width of an image.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.GetImageWidth() -> int;

Image.width # property
ITmage.size # property for tuple (Image.width, Image.height)

Return Value:
The width of an image.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 40

FSDK_GetimageHeight Function
Returns the height of an image.
C++ Syntax:

int FSDK GetImageHeight (HImage SourcelImage, int* Height) ;

Delphi Syntax:

function FSDK GetImageHeight (SourcelImage: HImage; Height:
PInteger) : integer;

C# Syntax:

int FSDK.GetImageHeight (int SourcelImage, ref int Height);

VB Syntax:

Function FSDKVB GetImageHeight (ByVal SourceImage As Long,
ByRef Height As Long) As Long

Java and Android Syntax:

int FSDK.GetImageHeight (HImage SourcelImage, int Height[]):;

Clmage Syntax:

int FSDK.CImage.Height;

Parameters:

SourceImage — internal handle of an image.
Height — pointer to an integer variable to store the height of an image.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.GetImageHeight () -> int;

Image.height # property
Image.size # property for tuple (Image.width, Image.height)

Return Value:
The height of an image.

FSDK_Copylmage Function

Creates a copy of an image. The handle of the destination image should be created with
the FSDK_CreateEmptylmage function.

C++ Syntax:

int FSDK Copylmage (HImage SourcelImage, HImage DestImage) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 41

Delphi Syntax:

function FSDK CopylImage (SourcelImage: HImage; DestImage:
HImage): integer;

C# Syntax:

int FSDK.CopylImage (int SourceImage, int DestImage) ;

VB Syntax:

Function FSDKVB CopylImage (ByVal SourcelImage As Long, ByVal
DestImage As Long) As Long

Java and Android Syntax:

int FSDK.CopyImage (HImage SourcelImage, HImage DestImage) ;

Clmage Syntax:

FSDK.CImage FSDK.CImage.Copy():;

Parameters:

SourceImage — handle of an image to be copied.
DestImage —handle of the destination image.
Return Value:

Returns FSDKE_OK if successful.

Python Syntax:

def FSDK.Copylmage (sourcelmage: Image, destImage: Image) ->
Image;

def Image.Copy () -> Image;

Return Value:
The new copy of an image.

FSDK_Resizelmage Function

Changes the size of an image. The handle of the destination image should be created with
the FSDK_CreateEmptylmage function.

C++ Syntax:

int FSDK ResizelImage (HImage Sourcelmage, double ratio, HImage
DestImage) ;

Delphi Syntax:

function FSDK Resizelmage (SourcelImage: HImage; ratio: double;
DestImage: HImage): integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 42

C# Syntax:

int FSDK.ResizelImage (int SourcelImage, double ratio, int
DestImage) ;

VB Syntax:

Function FSDKVB Resizelmage (ByVal SourcelImage As Long, ByVal
ratio As Double, ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.Resizelmage (HImage SourcelImage, double ratio, HImage
DestImage) ;

Clmage Syntax:

FSDK.CImage FSDK.CImage.Resize (double ratio);

Parameters:

SourceImage — handle of an image to be resized.

Ratio - factor by which the x and y dimensions of the source image are changed. A factor
value greater than 1 corresponds to increasing the image size.

DestImage —handle of the destination image.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.ResizelImage (sourceImage: Image, ratio: float,
destImage: Image) -> Image;

def Image.Resize(ratio: float) -> Image;

Return Value:

The new resized image.

FSDK_Rotatelmage Function

Rotates an image around its center. The handle of the destination image should be created with
the FSDK_CreateEmptylmage function.

C++ Syntax:

int FSDK RotatelImage (HImage SourcelImage, double angle, HImage
DestImage) ;

Delphi Syntax:

function FSDK RotatelImage (SourcelImage: HImage; angle: double;
DestImage: HImage): integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 43

C# Syntax:

int FSDK.RotateImage (int SourcelImage, double angle, int
DestImage) ;

VB Syntax:

Function FSDKVB RotatelImage (ByVal SourcelImage As Long, ByVal
angle As Double, ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.RotatelImage (HImage SourceImage, double angle, HImage
DestImage) ;

Clmage Syntax:

FSDK.CImage FSDK.CImage.Rotate (double angle);

Parameters:

SourceImage — handle of an image to be rotated.
Angle - rotation angle in degrees.
DestImage —handle of the destination image.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.Rotatelmage (sourcelmage: Image, angle: float,
destImage: Image) -> Image;

def Image.Rotate(angle: float) -> Image;

Return Value:
The new rotated image.

FSDK_RotatelmageCenter Function

Rotates an image around an arbitrary center. The handle of the destination image should be
created with the FSDK_CreateEmptylmage function.

C++ Syntax:

int FSDK RotateImageCenter (HImage SourcelImage, double angle,
double xCenter, double yCenter, HImage DestImage) ;

Delphi Syntax:

function FSDK RotateImageCenter (SourcelImage: HImage; angle:
double; xCenter: double; yCenter: double; DestImage:
HImage;): integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 44

C# Syntax:

int FSDK.RotateImageCenter (int SourcelImage, double angle,
double xCenter, double yCenter, int DestImage);

VB Syntax:

Function FSDKVB RotatelImageCenter (ByVal SourcelImage As Long,
ByVal angle As Double, ByVal xCenter As Double, ByVal yCenter
As Double, ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.RotateImageCenter (HImage SourcelImage, double angle,
double xCenter, double yCenter, HImage DestImage) ;

Parameters:

SourceImage — handle of an image to be rotated.
Angle - rotation angle in degrees.

xCenter —the X coordinate of the rotation center.
yCenter —theY coordinate of the rotation center.
DestImage —handle of the destination image.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.RotatelmageCenter (sourcelmage: Image, angle: float,
xCenter: float, yCenter: float, destImage: Image) -> Image;

def Image.RotateCenter (angle: float, xc: float, yc: float) ->
Image;

Return Value:
The new rotated image.

FSDK_Rotatelmage90 Function

Rotates the image by 90 or 180 degrees clockwise or counter-clockwise. The handle of the
destination image should be created with the ESDK_CreateEmptylmage function.

C++ Syntax:

int FSDK RotateImage90 (HImage SourcelImage, int Multiplier,
HImage DestImage);

Delphi Syntax:

function FSDK RotatelImage90 (Sourcelmage: HImage; Multiplier:
integer,;DestImage: HImage) : integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 45

C# Syntax:

int FSDK.RotateImage90 (int SourcelImage, int Multiplier, int
DestImage) ;

VB Syntax:

Function FSDKVB RotateImage90 (ByVal SourceImage As Long, ByVal
Multiplier As Long, ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.RotateImage90 (HImage SourcelImage, int Multiplier,
HImage DestImage);

Clmage Syntax:

FSDK.CImage FSDK.CImage.Rotate90 (int Multiplier);

Parameters:

SourceImage — handle of an image to be rotated.

Multiplier - an integer multiplier of 90 degrees defining the rotation angle. Specify 1 for
90 degrees clockwise, 2 for 180 degrees clockwise; specify -1 for 90 degrees counter-clockwise.
DestImage —handle of the destination image.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.RotateImage90 (sourcelImage: Image, multiplier: int,
destImage: Image) -> Image;

def Image.Rotate90 (multiplier: int = 1) -> Image;

Return Value:

The new rotated image.

FSDK_CopyRect Function

Creates a copy of a rectangular area of an image. The handle of the destination image should
be created with the FSDK_CreateEmptylmage function. If some apex of a rectangle is located
outside the source image, rectangular areas that do not contain the source image will be black.

C++ Syntax:

int FSDK CopyRect (HImage SourcelImage, int xI1, int yI, int x2,
int y2, HImage DestImage) ;

Delphi Syntax:

function FSDK CopyRect (SourcelImage: HImage; xI1, yl, x2, y2:
integer; DestImage: HImage): integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 46

C# Syntax:

int FSDK.CopyRect (int SourcelImage, int xI, int yl1, int x2,
int y2, int DestImage);

VB Syntax:

Function FSDKVB CopyRect (ByVal SourcelImage As Long, ByVal xI
As Long, ByVal yl As Long, ByVal x2 As Long, ByVal y2 As Long,
ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.CopyRect (HImage SourcelImage, int x1, int yl1, int x2,
int y2, HImage DestImage) ;

Clmage Syntax:

FSDK.CImage FSDK.CImage.CopyRect (int xI, int yI, int x2, int
y2);

Parameters:

SourceImage — handle of an image to copy the rectangle from.

x1 —the X coordinate of the bottom left corner of the copied rectangle.
y1 —theY coordinate of the bottom left corner of the copied rectangle.
x2 —the X coordinate of the top right corner of the copied rectangle.
y2 —theY coordinate of the top right corner of the copied rectangle.
DestImage —handle of the destination image.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.CopyRect (sourceImage: Image, x1: int, yl: int, x2:
int, y2: int, destImage: Image) -> Image;

def Image.CopyRect(xI: int, yI: int, x2: int, y2: int) ->
Image;

Return Value:
The new cropped image.

FSDK_CopyRectReplicateBorder Function

Creates a copy of a rectangular area of an image and adds replicated border pixels. The handle
of the destination image should be created with the FSDK_CreateEmptylmage function.

This function copies the source image to the destination image and fills pixels ("border™) outside
the copied area in the destination image with the values of the nearest source image pixels.

C++ Syntax:

int FSDK CopyRectReplicateBorder (HImage SourcelImage, int xI,
int yl1, int x2, int y2, HImage DestImage) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 47

Delphi Syntax:

function FSDK CopyRectReplicateBorder (SourcelImage: HImage; xI,
yl, x2, y2: integer; DestImage: HImage): integer;

C# Syntax:

int FSDK.CopyRectReplicateBorder (int SourcelImage, int x1, int
yl, int x2, int y2, int DestImage) ;

VB Syntax:

Function FSDKVB CopyRectReplicateBorder (ByVal Sourcelmage As
Long, ByVal x1 As Long, ByVal ylI As Long, ByVal x2 As Long,
ByVal y2 As Long, ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.CopyRectReplicateBorder (HImage SourcelImage, int xI,
int yl1, int x2, int y2, HImage DestImage) ;

Clmage Syntax:

FSDK.CImage FSDK.CImage.CopyRectReplicateBorder (int xI, int
yl, int x2, int y2);

Parameters:

SourceImage — handle of an image to copy the rectangle from.

x 1 —the X coordinate of the left bottom corner of the copied rectangle.
y1—the Y coordinate of the left bottom corner of the copied rectangle.
x2 —the X coordinate of the right top corner of the copied rectangle.
y2 —theY coordinate of the right top corner of the copied rectangle.
DestImage —handle of the destination image.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.CopyRectReplicateBorder (sourceImage: Image, x1: int,
yl: int, x2: int, y2: int, destImage: Image) -> Image;

def Image.CopyRectReplicateBorder(xI: int, yl: int, x2: int,
y2: int) -> Image;

Return Value:
The new cropped image.

FSDK_Mirrorimage Function
Mirrors an image. The function can mirror images horizontally or vertically inplace.
C++ Syntax:

int FSDK MirrorImage (HImage Image, bool
UseVerticalMirroringInsteadOfHorizontal) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 48

Delphi Syntax:

function FSDK MirrorImage (Image: HImage;
UseVerticalMirroringInsteadOfHorizontal: boolean): integer;

C# Syntax:

int FSDK.MirrorImage (int Image, bool
UseVerticalMirroringInsteadOfHorizontal) ;

VB Syntax:

Function FSDKVB MirrorImage (ByVal Image As Long, ByVal
UseVerticalMirroringInsteadOfHorizontal As Boolean) As Long

Java and Android Syntax:

int FSDK.MirrorImage (HImage Image, boolean
UseVerticalMirroringInsteadOfHorizontal) ;

Clmage Syntax:

FSDK.CImage FSDK.CImage.MirrorVertical():;
FSDK.CImage FSDK.CImage.MirrorHorizontal ();

Parameters:

Image - handle of the image to be mirrored.
UseVerticalMirroringInsteadOfHorizontal— setsthe mirror direction.

TRUE: left-to-right swap;
FALSE: top-to-bottom swap;
Return Value:

Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.MirrorImage (image: Image,
useVerticalMirroringInsteadOfHorizontal: bool = False) ->
Image;

def Image.Mirror (useVerticalMirroringInsteadOfHorizontal: bool
= False) -> Image;

Return Value:

Mirrored image.

FSDK_Freelmage Function

Frees the internal representation of an image.
C++ Syntax:

int FSDK Freelmage (HImage Image);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 49

Delphi Syntax:

‘function FSDK Freelmage (Image: HImage): integer;

C# Syntax:

‘int FSDK.FreelImage (int Image);

VB Syntax:

‘Function FSDKVB FreelImage (ByVal Image As Long) As Long

Java and Android Syntax:

‘int FSDK.FreelImage (HImage Image);

Parameters:

Image — handle of the image to be freed.
Return Value:

Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.Freelmage (image: Image) :

def Image.Free();

Return Value:

None.

Note:

The image will be freed automatically if it is not freed by hand.

Face Detection

You can use the FSDK_DetectFace function to detect a frontal face in an image. The function
returns the position of the face in the image. The performance and reliability of face detection
IS controlled by the FSDK_SetFaceDetectionParametersand
FSDK_SetFaceDetectionThreshold functions.

Typical parameters for face detection are:

e To detect faces from a webcam in real time, call:

‘FSDK_SetFaceDetectionParameters(false, false, 100); ‘

e To reliably detect faces in digital camera photos, call

‘FSDK_SetFaceDetectionParameters(true, false, 500); ‘

Face Detection Models

Luxand FaceSDK allows you to switch the internal models used for face detection. You may
use the switching to load improved face detection models when made available by Luxand or
to switch to a thermal face detection model.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 50

Use the FSDK_SetParameter or FSDK_SetParameters function to load a face detection model
from a file. When wusing Tracker API, use the FSDK_SetTrackerParameter or
FSDK_SetTrackerMultipleParameters function instead. Set the FaceDetectionModel parameter
to specify the file to load a model from. Be sure to check the return value of
FSDK_SetParameter or FSDK_SetParameters to confirm the file loaded correctly.

To load a thermal face detection model, set FaceDetectionModel to thermal.bin. Confirm
this file is available in the current directory and, if not, specify the full path to the file.

To switch back to the default model (i.e., the model for visual face detection), set
FaceDetectionModel to default. See the FaceSDK Parameters section for more information.

Face Detection on Thermal Images

Luxand FaceSDK allows for the detection of faces on 8-bit grayscale thermal images. You
typically receive such images from a thermal camera, with each pixel representing temperature.

To pass the thermal image to FaceSDK, you may need to convert the temperature values of the
image (which may be float or 14-bit values, for example) into 8-bit values (from 0 to 255).
The absolute temperature itself is not taken into account by FaceSDK when detecting faces,
only the relative difference in temperature between facial features and the background.

Typically, you may normalize an image so that coldest pixel is represented by 0 and the hottest
by 255. However, if you have very hot or very cold images in the background, this may lead to
faces having a low contrast. Therefore, it is recommended to normalize the image so that 0
would represent the temperature of about 20 degrees Celsius and 255 the temperature of about
40 degrees Celsius (the usual range of temperatures for human faces). After this normalization,
any pixels colder than 20 degrees Celsius will have the value 0, and any pixels hotter than 40
degrees Celsius will have the value of 255.

If your thermal camera returns a noisy picture, you may get lower detection rates. In such cases,
it is recommended to de-noise the image with a median or a Gaussian filter before passing it to
FaceSDK. More information can be found on the links below:
https://en.wikipedia.org/wiki/Median_filter

https://en.wikipedia.org/wiki/Gaussian_blur

Try varying the face detection threshold if you get a high number of false positives or low
detection rates on your camera.

FaceSDK itself does not communicate with thermal cameras except when the camera is
available as a standard Windows web camera. When working with a thermal camera, you need
to use the camera manufacturer’s API to receive images. To pass thermal images to FaceSDK,
you may use the FSDK _LoadlmageFromBuffer function after converting the images to an 8-
bit format (and possibly normalizing the pixel values, as described above).

To detect faces on thermal images, follow these steps:
1. Load a face detection model by setting the FaceDetectionModel with the
FSDK_SetParameter or FSDK_SetParameters function. If using Tracker API, use the

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 51

https://en.wikipedia.org/wiki/Median_filter
https://en.wikipedia.org/wiki/Gaussian_blur

FSDK_SetTrackerParameter or FSDK_SetTrackerMultipleParameters function

instead.

2. Check the return value of the above functions for error to be sure the thermal model was
loaded.

3. Set the TrimOutOfScreenFaces and

TrimFacesWithUncertainFacialFeatures parameters to False using the
same functions.

4. Pass thermal images to FSDK_DetectFaces, FSDK_DetectMultipleFaces or
FSDK_FeedFrame (when using Tracker API).

Example:

FSDK SetParameters ("FaceDetectionModel=thermal.bin; TrimOutOfSc
reenFaces=false; TrimFacesWithUncertainFacialFeatures=false",
&err) ;

Refer to the Thermal sample application to see how faces on thermal images can be detected.

Data types

Luxand FaceSDK introduces the TFacePosition data type that stores the information about the
position of the face. The xc and yc fields specifies the X and Y coordinates of the center of
the face, w specifies the width of the face, and angle specifies the in-plane rotation angle of
the face in degrees.

C++ Declaration:

typedef struct {
int xc, yc, w;
int padding;
double angle;
} TFacePosition;

C# Declaration:

public struct TFacePosition {
public int xc, yc, w;
public double angle;

}

Delphi Declaration:

TFacePosition = record
xXc, yc, w: integer;
padding: integer;
angle: double;

end;

PFacePosition = "TFacePosition;

VB Declaration:

Type TFacePosition
xc As Long
yc As Long
w As Long

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 52

padding as Long
angle As Double
End Type

Java Declaration:

The class TFacePosition contains the following fields:

public int xc, yc, w;
public double angle;

The class TFaces encapsulates an array of TFacePosition classses. It has the following
properties:

public TFacePosition faces]|];
int maxFaces;

Python Declaration:

class FSDK.FacePosition (ctypes.Structure):

_fields = ("xc", c¢ int), ("yc", c int), ("w", c_int),
(" padding", c int), ("angle", c double)
@property

def rect (self):
w7 the rect of face as tuple (x1, vyl, x2, y2)%“"”
X, y, w = self.xc, self.yc, self.w//2
return x-w, y-w, X+w, y+w

FSDK_DetectFace Function

Detects a frontal face in an image and stores information about the face position into the
TFacePosition structure.

C++ Syntax:

int FSDK DetectFace (HImage Image, TFacePosition*
FacePosition) ;

Delphi Syntax:

function FSDK DetectFace (Image: HImage; FacePosition:
PFacePosition) : integer;

C# Syntax:

int FSDK.DetectFace(int Image, ref FSDK.TFacePosition
FacePosition);

VB Syntax:

Function FSDKVB DetectFace (ByVal Image As Long, ByRef
FacePosition As TFacePosition) As Long

Java Syntax:

int FSDK.DetectFace (HImage Image, TFacePosition.ByReference
FacePosition) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 53

Android Syntax:

‘int FSDK.DetectFace (HImage Image, TFacePosition FacePosition); ‘

Clmage Syntax:

‘FSDK.TFacePosition FSDK.CImage.DetectFace () ; ‘

Parameters:

Image — handle of the image to detect the face in.
FacePosition - pointerto the TFacePosition structure to store information about the face
position.

Return Value:

Returns FSDKE_OK if successful. If a face is not found, the function returns the
FSDKE_FACE_NOT_FOUND code. If the input image is too small (less than 20x20 pixels),
the functions returns FSDKE_IMAGE_TOO_SMALL.

Example

int imgl;
TFacePosition FacePosition;

FSDK Initialize("");
FSDK LoadImageFromFile (&imgl, "test.jpg");
FSDK DetectFace (imgl, &FacePosition);

printf ("face position: %d %d %$d", FacePosition.xc,
FacePosition.yc, FacePosition.angle);

Python Syntax:

def FSDK.DetectFace (image: Image) -> FacePosition;

def Image.DetectFace () -> FacePosition;

Return Value:
FacePosition object.

Exception:

FSDK.FaceNotFound
FSDK.ImageTooSmall

FSDK_DetectMultipleFaces Function

Detects multiple faces in an image.
C++ Syntax:

int FSDK DetectMultipleFaces (HImage Image, int* DetectedCount,
TFacePosition* FaceArray, int MaxSizeInBytes);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 54

Delphi Syntax:

function FSDK DetectMultipleFaces (Image: HImage;
DetectedCount: PInteger; FaceArray: PFacePositionArray;
MaxSizeInBytes: integer): integer;

C# Syntax:

int FSDK.DetectMultipleFaces (int Image, ref int DetectedCount,
out FSDK.TFacePosition[] FaceArray, int MaxSizeInBytes);

VB Syntax:

Function FSDKVB DetectMultipleFaces (ByVal Image As Long, ByRef
DetectedCount As Long, ByRef FaceArray As TFacePosition, ByVal
MaxSizeInBytes As Long) As Long

Java and Android Syntax:

int FSDK.DetectMultipleFaces (HImage Image, TFaces FaceArray):; ‘

Clmage Syntax:

FSDK.TFacePosition[] FSDK.CImage.DetectMultipleFaces(); ‘

Parameters:

Image —handle of the image to detect faces in.

DetectedCount - count of the faces found in the image.

FaceArray - pointer to the array of TFacePosition structure to store the information about
the detected faces.

MaxSizeInBytes - size of the FaceArray buffer in bytes. The function will not store more
than MaxSize bytes in the buffer.

Return Value:

Returns FSDKE_OK if successful. If no faces are found, the function returns the
FSDKE_FACE_NOT_FOUND code. If the input image is too small (less than 20x20 pixels),
the functions returns FSDKE_IMAGE_TOO_SMALL.

Example

int imgl;
int DetectedCount;
TFacePosition FaceArray[50];

FSDK Initialize("");

FSDK LoadImageFromFile (&imgl, "test.jpg"):;

FSDK DetectMultipleFaces (imgl, &DetectedCount , FaceArray,
sizeof (FaceArray)) ;

for (i = 0; 1 < DetectedCount; i++) {
printf ("face position: %d %d %d\n", FaceArrayl[i].xc,
FaceArrayl[i].yc, FaceArray[i].angle);

}

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 55

Python Syntax:

def FSDK.DetectMultipleFaces (image: Image) ->
List[FacePosition];

def Image.DetectMultipleFacea () -> List[FacePosition];

Return Value:
The list of FacePosition objects. If faces not found an empty list is returned.

Exception:
FSDK.ImageTooSmall

Example

from fsdk import FSDK

FSDK.Initialize ()
image = FSDK.Image ("test.jpg")
print (*image.DetectMultipleFaces (), sep = ‘\n’)

FSDK_SetFaceDetectionParameters Function

Allows setting a number of face detection parameters to control the performance and reliability
of face detector.

The function allows configuring the following parameters: HandleArbitraryRotations,
DetermineFaceRotationAngle and InternalResizeWidth.

HandleArbitraryRotations, DetermineFaceRotationAngle can be TRUE or FALSE, while
InternalResizeWidth is an integer.

Other face detection parameters that can also be set using the FSDK_SetParameter or
FSDK_SetParameters function.

C++ Syntax:

int FSDK SetFaceDetectionParameters (bool
HandleArbitraryRotations, bool DetermineFaceRotationAngle, int
InternalResizeWidth) ;

Delphi Syntax:

function

FSDK SetFaceDetectionParameters (HandleArbitraryRotations:
boolean; DetermineFaceRotationAngle: boolean;
InternalResizeWidth: integer): integer;

C# Syntax:

int FSDK.SetFaceDetectionParameters (bool
HandleArbitraryRotations, bool DetermineFaceRotationAngle, int
InternalResizeWidth) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 56

VB Syntax:

Function FSDKVB SetFaceDetectionParameters (ByVal
HandleArbitraryRotations As Boolean, ByVal
DetermineFaceRotationAngle As Boolean, ByVal
InternalResizeWidth As Long) As Long

Java and Android Syntax:

int FSDK.SetFaceDetectionParameters (boolean
HandleArbitraryRotations, boolean DetermineFaceRotationAngle,
int InternalResizeWidth) ;

Parameters:
HandleArbitraryRotations—extends default in-plane face rotation angle from -15..15
degrees to -30..30 degrees.

TRUE: extended in-plane rotation support is enabled at the cost of detection speed (3 times
performance hit).

FALSE: default fast detection -15..15 degrees.

DetermineFaceRotationAngle— enables or disables the detection of in-plane face
rotation angle.

TRUE: detects in-plane rotation angle when detecting faces. The angle is recorded into the
Angle field of the TFacePosition structure (TFacePosition is a structure returned by
FSDK_DetectFace and FSDK_DetectMultipleFaces).

FALSE: disables the detection of rotation angle.

Note: Enabling face rotation angle detection slows down the detection process slightly. Set this
parameter to TRUE if you are planning to call FSDK_DetectFacialFeatures or
ESDK_DetectFacialFeaturesinRegion.

InternalResizeWidth —controls the detection speed by setting the size of the image the
detection functions will work with. Choose higher value to increase detection quality, or lower
value to improve the performance.

Note: By default, all images are internally resized to the width of 384 pixels. 384 pixels are a
reasonable compromise between performance and detection quality. While large images are
down-sized, the smaller ones are up-sized to the specified Resize Width in order to maintain
constant detection speed.

Choosing the right value for InternalResizeWidth

Choosing the correct value for the InternalResizeWidth parameter is essential for the correct
operation of face detection functions of the SDK. The face detection functions can only detect
faces as small as 20x20 pixels. Even if the source image is a large 1000x1000 dots one, the face
on that image can be as small as 100x100 pixels. If you set InternalResizeWidth to 200, then
the source image will be resized to 200x200 pixels, thus the face will only occupy 20x20 pixels.
This is still enough for the SDK functions to work. If, however, you set InternalResizeWidth to
100, then the original image will become 100x100 pixels, and the face on it will only occupy
10x10 dots, which is NOT enough for the SDK functions to work with.

Be extra careful when changing the default value of InternalResizeWidth. For example,
webcam images can be usually detected with InternalResizeWidth set to 100, while images
from multi-megapixel digital cameras require values of at least 384 or 512 pixels to work with.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 57

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.SetFaceDetectionParameters (handleArbitraryRotations:
bool, determineFaceRotationAngle: bool, internalResizeWidth:
int);

Return Value:
None.

FSDK_SetFaceDetectionThreshold Function

Sets a threshold value for face detection. The default value is 5. The lowest possible value is 1.

The function allows adjusting the sensitivity of the detection. If the threshold value is set to a
higher value, the detector will only recognize faces with sharp, clearly defined details, thus
reducing the number of false positive detections. Setting the threshold lower allows detecting
more faces with less clearly defined features at the expense of increased number of false
positives.

C++ Syntax:

int FSDK SetFaceDetectionThreshold (int Threshold);

Delphi Syntax:

function FSDK SetFaceDetectionThreshold(Threshold: integer):
integer;

C# Syntax:

int FSDK.SetFaceDetectionThreshold (int Threshold) ;

VB Syntax:

Function FSDKVB SetFaceDetectionThreshold(ByVal Threshold As
Long) As Long

Java and Android Syntax:

int FSDK.SetFaceDetectionThreshold (int Threshold) ;

Parameters:

Threshold — Threshold value.
Return Value:

Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.SetFaceDetectionThreshold (threshold: int);

Return Value:
None.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 58

Facial Feature Detection

FaceSDK provides the FSDK_DetectFacialFeatures function to detect facial features in an
image and the FSDK_DetectEyes function to detect just eye centers in an image. First, these
functions detect a frontal face in an image, and then detect its facial features or only eye centers.
The FSDK_DetectFacialFeaturesinRegion and FSDK_DetectEyesinRegion functions do not
perform the face detection step and detect facial features or eye centers in a region returned by
FSDK_DetectFace or FESDK_DetectMultipleFaces.

In the current version of Luxand FaceSDK the performance of FSDK_DetectEyes and
FSDK_DetectFacialFeatures is the same, so there is no advantage in calling FSDK_DetectEyes
instead of FSDK_DetectFacialFeatures.

The facial features are stored in the FSDK_Features data structure. FSDK_Features is an array
data type containing FSDK_FACIAL_FEATURE_COUNT points. The list of facial features
recognized by FaceSDK is available in the Detected Facial Features chapter.

Eye centers are saved to FSDK_Features[0] and FSDK_Features[1]. The FSDK_DetectEyes
and FSDK_DetectEyesInRegion functions do not change other elements of the FSDK_Features
array.

C++ Declaration:

typedef struct { int x,y; } TPoint;
typedef TPoint FSDK Features [FSDK FACIAL FEATURE COUNT];

C# Declaration:

public struct TPoint {
public int x, vy;

}

Delphi Declaration:

TPoint = record
X, y: integer;
end;
FSDK Features = array[0..FSDK FACIAL FEATURE COUNT - 1] of
TPoint;
PFSDK Features = "FSDK Features;

VB Declaration:

Type TPoint
x As Long
y As Long
End Type

Java and Android Declaration:
The class TPoint has the following properties:

public int x, vy;

The class FSDK_Features has the following property:
public TPoint features|[];

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 59

Python Declaration:

class Point (ctypes.Structure) :
fields = ("x", c_int), ("y", c_int)
Features = Point*FSDK.FSDK FACIAL FEATURE COUNT

FSDK_DetectFacialFeatures Function

Detects a frontal face in an image and detects its facial features.
C++ Syntax:

int FSDK DetectFacialFeatures (HImage Image, FSDK Features*
FacialFeatures) ;

Delphi Syntax:

function FSDK DetectFacialFeatures (Image: HImage;
FacialFeatures: PFSDK Features): integer;

C# Syntax:

int FSDK.DetectFacialFeatures (int Image, out FSDK.TPoint[]
FacialFeatures);

VB Syntax:

Function FSDKVB DetectFacialFeatures (ByVal Image As Long,
ByRef FacialFeatures As TPoint) As Long

Java Syntax:

int FSDK.DetectFacialFeatures (HImage Image,
FSDK Features.ByReference FacialFeatures);

Android Syntax:

int FSDK.DetectFacialFeatures (HImage Image, FSDK Features
FacialFeatures) ;

Clmage Syntax:

FSDK.TPoint[] FSDK.CImage.DetectFacialFeatures/();

Parameters:
Image— handle of the image facial features should be detected in.

FacialFeatures— pointer to the FSDK_Features array for receiving the detected facial

features.
Return Value:
Returns FSDKE_OK if successful.

Example

int imgl;
FSDK Features Features;

FSDK Initialize("");

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

60

FSDK LoadImageFromFile (&imgl, "test.jpg"):;
FSDK DetectFacialFeatures (imgl, Features);

printf ("Left eye location: (%d, %d)\n",
Features [FSDKP LEFT EYE].x, Features[FSDKP LEFT EYE].y);
printf ("Right eye location: (%d, %d)\n",
Features[FSDKP_RIGHT_EYE].y, Features[FSDKP_RIGHT_EYE].y);

Python Syntax:

def FSDK.DetectFacialFeatures (image: Image) -> Features;

def Image.DetectFacialFeatures (image: Image, facePosition:
FacePosition = None, *, confidencelLevels = False) -> Features;

Return Value:

The Features object.
Exception:
FSDK.FaceNotFound
Note:

If facePosition is None the function detects a frontal face in an image and returns its
facial features

If facePosition is defined the function detects facial features of a specific face in a
region returned by FSDK.DetectFace Oor FSDK.DetectMultipleFace.

If confidenceLevel is True the returned 'Features' objects contains the
confidenceLevel attribute represented by an array of floats that holds confidence levels
of each facial feature.

Example

from fsdk import FSDK

FSDK.Initialize ()

features = FSDK.Image ("test.jpg") .DetectFacialFeatures ()

print (f”Left eye location: {features[FSDK.FSDKP LEFT EYE]}"”)
print (f”Right eye location: {features[FSDK.FSDKP RIGHT EYE]}")

FSDK_DetectFacialFeaturesinRegion Function

Detects facial features in an image region returned by FSDK_DetectFace or
FSDK_DetectMultipleFaces. This function can be useful if an approximate face size is known,
or to detect facial features of a specific face returned by FSDK_DetectMultipleFaces.

C++ Syntax:

int FSDK DetectFacialFeaturesInRegion (HImage Image,
TFacePosition* FacePosition, FSDK Features* FacialFeatures);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 61

Delphi Syntax:

function FSDK DetectFacialFeaturesInRegion(Image: HImage;
FacePosition: PFacePosition; FacialFeatures: PFSDK Features) :
integer;

C# Syntax:

int FSDK.DetectFacialFeaturesInRegion (int Image, ref
FSDK.TFacePosition FacePosition, out FSDK.TPoint][]
FacialFeatures) ;

VB Syntax:

Function FSDKVB DetectFacialFeaturesInRegion (ByVal Image As
Long, ByRef FacePosition As TFacePosition, ByRef
FacialFeatures As TPoint) As Long

Java Syntax:

int FSDK.DetectFacialFeaturesInRegion (HImage Image,
TFacePosition FacePosition, FSDK Features.ByReference
FacialFeatures) ;

Android Syntax:

int FSDK.DetectFacialFeaturesInRegion (HImage Image,
TFacePosition FacePosition, FSDK Features FacialFeatures);

C# Syntax:

FSDK.TPoint[] FSDK.CImage.DetectFacialFeaturesInRegion (ref
FSDK.TFacePosition FacePosition);

Parameters:

Image — handle of the image facial features should be detected in.

FacePosition — pointer to the face position structure.

FacialFeatures - pointer to the FSDK Features array for receiving the detected facial
features.

Return Value:
Returns FSDKE_OK if successful.

Example

int i, DetectedCount, imgl;
FSDK Features Features;
TFacePosition FaceArray[50];

FSDK Initialize("");
FSDK LoadImageFromFile (&imgl, "test.jpg"):;

FSDK DetectMultipleFaces (imgl, &DetectedCount , FaceArray,
sizeof (FaceArray)) ;

for (i = 0; 1 < DetectedCount; 1i++) {

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 62

FSDK DetectFacialFeaturesInRegion (imgl, FaceArrayl[i],
Features) ;

printf ("Left eye location: (%d, %d)\n",
Features[FSDKP_LEFT_EYE].x, Features[FSDKP_LEFT_EYE].y);

printf ("Right eye location: (%d, %d)\n",
Features [FSDKP RIGHT EYE].x, Features[FSDKP RIGHT EYE].y);
}

Python Syntax:

def FSDK.DetectFacialFeaturesInRegion (image: Image,
facePosition: FacePosition) -> Features;

def Image.DetectFacialFeatures (image: Image, facePosition:
FacePosition = None, *, confidencelLevels = False) -> Features;

Return Value:
The Features objects.

Example

from fsdk import FSDK

FSDK.Initialize ()
image = FSDK.Image ("test.jpg")

for fpos in image.DetectMultipleFaces () :

features = image.DetectFacialFeatures (image, fpos,
confidencelLevel = True)

print (“Left eye location:”,
features [FSDK.FSDKP LEFT EYE], “confidence =",
features.confidencelLevels [FSDK.FSDKP LEFT EYE])

print (“Right eye location:”,
features [FSDK.FSDKP RIGHT EYE], “confidence =",
features.confidencelLevels [FSDK.FSDKP RIGHT EYE])

FSDK_DetectEyes Function

Detects a frontal face in an image and detects its eye centers.
C++ Syntax:

int FSDK DetectEyes (HImage Image, FSDK Features*
FacialFeatures) ;

Delphi Syntax:

function FSDK DetectEyes (Image: HImage; FacialFeatures:
PFSDK Features) : integer;

C# Syntax:

int FSDK.DetectEyes (int Image, out FSDK.TPoint/[]
FacialFeatures) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 63

VB Syntax:

Function FSDKVB DetectEyes (ByVal Image As Long, ByRef
FacialFeatures As TPoint) As Long

Java Syntax:

int FSDK.DetectEyes (HImage Image, FSDK Features.ByReference
FacialFeatures) ;

Android Syntax:

int FSDK.DetectEyes (HImage Image, FSDK Features
FacialFeatures) ;

Clmage Syntax:

FSDK.TPoint[] FSDK.CImage.DetectEyes();

Parameters:

Image - handle of the image eye centers should be detected in.
FacialFeatures - pointer to the FSDK _Features array for receiving the detected eye
centers.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

class Eyes (Point*2) :

""" An array of two 2D coordinates for eyes """

def FSDK.DetectEyes (image: Image) -> Eyes:

def Image.DetectEyes (facePosition: FacePosition = None) ->
Eyes;

Return Value:
The Eyes object.

FSDK_DetectEyesinRegion Function

Detects eye centers in an 1image region returned by FSDK_ DetectFace or
FSDK_DetectMultipleFaces.

C++ Syntax:

int FSDK DetectEyesInRegion (HImage Image, TFacePosition*
FacePosition, FSDK Features* FacialFeatures);

Delphi Syntax:

function FSDK DetectEyesInRegion (Image: HImage; FacePosition:
PFacePosition; FacialFeatures: PFSDK Features): integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 64

C# Syntax:

int FSDK.DetectEyesInRegion (int Image, ref FSDK.TFacePosition
FacePosition, out FSDK.TPoint[] FacialFeatures);

VB Syntax:

Function FSDKVB DetectEyesInRegion (ByVal Image As Long, ByRef
FacePosition As TFacePosition, ByRef FacialFeatures As TPoint)
As Long

Java Syntax:

int FSDK.DetectEyesInRegion (HImage Image, TFacePosition
FacePosition, FSDK Features.ByReference FacialFeatures);

Android Syntax:

int FSDK.DetectEyesInRegion (HImage Image, TFacePosition
FacebPosition, FSDK Features FacialFeatures);

Clmage Syntax:

FSDK.TPoint[] FSDK.CImage.DetectEyesInRegion (ref
FSDK.TFacePosition FacePosition);

Parameters:

Image - handle of the image eye centers should be detected in.

FacePosition — pointer to the face position structure.

FacialFeatures - pointer to the FSDK Features array for receiving the detected eye
centers.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.DetectEyesInRegion (image: Image, facePosition:
FacePosition) -> Eyes:

def Image.DetectEyes (facePosition: FacePosition = None) ->
Evyes;

Return Value:
The Eyes object.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 65

Detected Facial Features

Luxand FaceSDK detects 70 facial feature points. These facial feature points can be accessed
by their names in the FSDK_Features array.

Facial Feature Name Value
FSDKP_LEFT_EYE 0
FSDKP_RIGHT_EYE 1
FSDKP_LEFT_EYE_INNER_CORNER 24
FSDKP_LEFT EYE_OUTER_CORNER 23
FSDKP_LEFT EYE_LOWER_LINE1 38
FSDKP_LEFT _EYE_LOWER_LINE2 27
FSDKP_LEFT EYE_LOWER_LINE3 37
FSDKP_LEFT EYE_UPPER_LINE1 35
FSDKP_LEFT_EYE_UPPER_LINE2 28

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 66

FSDKP_LEFT_EYE_UPPER_LINE3 36
FSDKP_LEFT_EYE_LEFT_IRIS_CORNER 29
FSDKP_LEFT_EYE_RIGHT_IRIS_CORNER 30
FSDKP_RIGHT_EYE_INNER_CORNER 25
FSDKP_RIGHT_EYE_OUTER_CORNER 26
FSDKP_RIGHT EYE_LOWER_LINE1 41
FSDKP_RIGHT _EYE_LOWER_LINE2 31
FSDKP_RIGHT _EYE_LOWER_LINE3 42
FSDKP_RIGHT_EYE_UPPER_LINE1 40
FSDKP_RIGHT_EYE_UPPER_LINE2 32
FSDKP_RIGHT_EYE_UPPER_LINE3 39
FSDKP_RIGHT EYE_LEFT_IRIS_CORNER 33
FSDKP_RIGHT_EYE_RIGHT_IRIS_CORNER 34
FSDKP_LEFT_EYEBROW_INNER_CORNER 13
FSDKP_LEFT_EYEBROW_MIDDLE 16
FSDKP_LEFT_EYEBROW_MIDDLE_LEFT 18
FSDKP_LEFT_EYEBROW_MIDDLE_RIGHT 19
FSDKP_LEFT_EYEBROW_OUTER_CORNER 12
FSDKP_RIGHT_EYEBROW_INNER_CORNER 14
FSDKP_RIGHT_EYEBROW_MIDDLE 17
FSDKP_ RIGHT_EYEBROW_MIDDLE_LEFT 20
FSDKP_ RIGHT_EYEBROW_MIDDLE_RIGHT 21
FSDKP_RIGHT_EYEBROW_OUTER_CORNER 15
FSDKP_NOSE_TIP 2

FSDKP_NOSE_BOTTOM 49
FSDKP_NOSE_BRIDGE 22
FSDKP_NOSE_LEFT_WING 43
FSDKP_NOSE_LEFT_WING_OUTER 45
FSDKP_NOSE_LEFT_WING_LOWER 47
FSDKP_NOSE_RIGHT_WING 44

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

67

FSDKP_NOSE_RIGHT_WING_OUTER 46
FSDKP_NOSE_RIGHT_WING_LOWER 48
FSDKP_MOUTH_RIGHT_CORNER 3

FSDKP_MOUTH_LEFT_CORNER 4

FSDKP_MOUTH_TOP 54
FSDKP_MOUTH_TOP_INNER 61
FSDKP_MOUTH_BOTTOM 55
FSDKP_MOUTH_BOTTOM_INNER 64
FSDKP_MOUTH_LEFT_TOP 56
FSDKP_MOUTH_LEFT_TOP_INNER 60
FSDKP_MOUTH_RIGHT_TOP 57
FSDKP_MOUTH_RIGHT TOP_INNER 62
FSDKP_MOUTH_LEFT_BOTTOM 58
FSDKP_MOUTH_LEFT_BOTTOM_INNER 63
FSDKP_MOUTH_RIGHT_BOTTOM 59
FSDKP_MOUTH_RIGHT_BOTTOM_INNER 65
FSDKP_NASOLABIAL_FOLD_LEFT_UPPER 50
FSDKP_NASOLABIAL_FOLD_LEFT_LOWER 52
FSDKP_NASOLABIAL_FOLD_RIGHT_UPPER 51
FSDKP_NASOLABIAL_FOLD_RIGHT_LOWER 53
FSDKP_CHIN_BOTTOM 11
FSDKP_CHIN_LEFT 9

FSDKP_CHIN_RIGHT 10
FSDKP_FACE_CONTOUR1 7

FSDKP_FACE_CONTOUR2 5

FSDKP_FACE_CONTOUR12 6

FSDKP_FACE_CONTOUR13 8

FSDKP_FACE_CONTOUR14 66
FSDKP_FACE_CONTOUR15 67
FSDKP_FACE_CONTOUR16 68

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

68

FSDKP_FACE_CONTOURL17 69

Mask-on Face Detection

To detect faces covered by masks, you need to adjust the settings of several parameters. You
also need to download a model file trained specifically on masked faces (for visual face
detection) and put it into the working directory of your application:
https://luxand.com/download/fd_masks1.bin

If you are using FSDK_DetectFace or FSDK_DetectMultipleFaces to detect faces (i.e. you
don't use Tracker API), use the following code to set the recommended face detection
parameters and use the latest model file:

int err = 0;
FSDK SetFaceDetectionParameters (true, false, 1024);
FSDK SetFaceDetectionThreshold(5);

if (FSDKE OK !=

FSDK SetParameters ("FaceDetectionModel=fd masksl.bin;TrimFaces
WithUncertainFacialFeatures=false",

&err))

{

fprintf (stderr, "Error loading face detection model!\n");

exit (3);

}

Alternatively, if you are using Tracker API, use the following calls:

int err = 0;

FSDK SetTrackerMultipleParameters (tracker,
"RecognizeFaces=false; HandleArbitraryRotations=true;
DetermineFaceRotationAngle=false; InternalResizeWidth=1024;
FaceDetectionThreshold=5;", &err);

if (FSDKE OK != FSDK SetTrackerMultipleParameters (tracker,
"FaceDetectionModel=fd masksl.bin;TrimFacesWithUncertainFacial
Features=false",

&err))

{

fprintf (stderr, "Error loading face detection model!\n");

exit (3);

}

In the code above, the TrimFacesWithUncertainFacialFeatures parameter is set
to false. When it is set to true, faces with uncertain facial features are removed from the
detection result. As masks may cover many facial features, this setting was preventing such
faces from being detected. You can learn more about this parameter here:

Configuration

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 69

https://luxand.com/download/fd_masks1.bin

We don't recommend that you use face matching when this parameter is setto false, since it
will give a higher amount of false acceptances. We plan to update our face recognition models
so they support mask-on face matching soon.

We recommend setting the InternalResizeWidth parameter to 1024 so the faces that are far from
the camera are detected. If you don't expect your faces to be that far, you can lower the
parameter value to 512 or 256 to increase the speed of detection.

Face Matching

Luxand FaceSDK provides the API to extract face templates and match them. A template
extracted from a face can be stored in a database and can then be used to match faces using the
FSDK_MatchFaces function.

To extract a face template, use the FSDK_GetFaceTemplate,
FSDK_GetFaceTemplateInRegion or FSDK_GetFaceTemplateUsingFeatures functions. The
FSDK_MatchFaces function returns the facial similarity level. You may consider similarity to
be equal to the probability that templates belong to the same person.

More precisely: if the access control system provides access to a person when similarity is
higher of threshold x, the possibility of providing erroneous access to another person is 1-x.
For example, if the decision to provide access to a person is based on the code

if (similarity > 0.99)
AllowAccess () ;

the possibility of erroneous access to another person is 0.01, or 1%.

A facial template contains data that describes the face. There is no direct way to re-create the
original face image from a template. However, when using Tracker API, it may store the
original facial images in Tracker memory (see the Storing original facial images section).

To determine if the matched templates belong to the same person (with a specified error
possibility), you can compare the facial similarity value with a threshold calculated by the
FSDK_GetMatchingThresholdAtFAR or ESDK_GetMatchingThresholdAtFRR functions.

Note: it is recommended to retain both the original face images and their templates in the
database. This is because future versions of Luxand FaceSDK may offer an improved template
extraction algorithm, together with changes to the template format. If you are using Tracker
API, there is an option to convert its memory automatically if the template format changes (see
the Storing original facial images section).

A face template is stored in the FSDK_FaceTemplate data structure.

In .NET, there is no specific data type for a template. Instead, it is stored in an array of bytes
of FSDK.TemplateSize length. Below is an example of retrieving facial template in C#.

C# Example:

templateData = new byte[FSDK.TemplateSize];
FSDK.GetFaceTemplate (imageHandle, out templateData);

C++ Declaration:

typedef struct {
char ftemplate [1040];
} FSDK FaceTemplate;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 70

Delphi Declaration:

FSDK FaceTemplate = record

Template: array[0.. 1040-1] of byte;
end;
PFSDK FaceTemplate = "FSDK FaceTemplate;

Java and Android Declaration:

The class FSDK FaceTemplate has the following property:

public byte templatel];

VB Declaration:

Public Type FSDK FaceTemplate

FaceTemplate (1040) as Byte

End Type

Python Declaration:

FSDK.FaceTemplate = c char*const.FSDK FACE TEMPLATE SIZE

FSDK_GetFaceTemplate Function

This function is used to extract a template from a facial image. The function first detects a face,
then detects its facial features and extracts the template.

If there is more than one face in the image, the template is extracted for the face with the most
clearly visible details. If there is no clearly visible face, the function returns an error code. To
set the threshold determining the accepted quality for faces, wuse the
FSDK_SetFaceDetectionThreshold function.

If the face position or its features or eye centers are known, it is more efficient to use the
FSDK_GetFaceTemplateInRegion or FSDK_GetFaceTemplateUsingEyes functions. To
extract the template for a specific face, use the FSDK_GetFaceTemplateInRegion function.

C++ Syntax:

int FSDK GetFaceTemplate (HImage Image, FSDK FaceTemplate*
FaceTemplate) ;

Delphi Syntax:

function FSDK GetFaceTemplate (Image: HImage; FaceTemplate:
PFSDK FaceTemplate) : integer;

C# Syntax:

int FSDK.GetFaceTemplate (int Image, out bytel[] FaceTemplate);

VB Syntax:

Function FSDKVB GetFaceTemplate (ByVal Image As Long, ByRef
FaceTemplate As Byte) As Long

Java Syntax:

int FSDK.GetFaceTemplate (HImage Image,
FSDK FaceTemplate.ByReference FaceTemplate);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 71

Android Syntax:

int FSDK.GetFaceTemplate (HImage Image, FSDK FaceTemplate
FaceTemplate) ;

Clmage Syntax:

byte[] FSDK.CImage.GetFaceTemplate ()

Parameters:

Image— handle of the image from which to extract the face template.
FaceTemplate - pointer to the FSDK_FaceTemplate structure, used to receive the face
template.

Return Value:

Returns FSDKE_OK if successful. If no faces are found, or the quality of the image is not
sufficient, the function returns the FSDKE_FACE_NOT_FOUND code.

Python Syntax:

def FSDK.GetFaceTemplate (image: Image) -> FaceTemplate;

def Image.GetFaceTemplate (facePosition: FacePosition = None) -
> FaceTemplate;

Return Value:
The FaceTemplate object.

FSDK_GetFaceTemplatelnRegion Function

Extracts a template for a face located in a specific region returned by FSDK_DetectFace or
FSDK_DetectMultipleFaces.

The function detects facial features in a specific region and extracts a template. The face
detection stage is not performed. This function can be useful if an approximate face size and
position is known, or to process a specific face returned by FSDK_DetectFace or
FSDK_DetectMultipleFaces. The function returns no error if the face is not clearly visible. This
is because it assumes that if face detection functions return a detected face position, the face is
of sufficient quality.

If facial features or eye centers are known, it is more efficient to use the
FSDK GetFaceTemplateUsingFeatures or FSDK GetFaceTemplateUsingEyes function.

C++ Syntax:

int FSDK GetFaceTemplateInRegion (HImage Image, TFacePosition*
FacePosition, FSDK FaceTemplate* FaceTemplate);

Delphi Syntax:

function FSDK GetFaceTemplateInRegion (Image: HImage;
FacePosition: PFacePosition; FaceTemplate:
PFSDK FaceTemplate) : integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 72

C# Syntax:

int FSDK.GetFaceTemplateInRegion (int Image, ref
FSDK.TFacePosition FacePosition, out byte[] FaceTemplate);

VB Syntax:

Function FSDKVB GetFaceTemplateInRegion (ByVal Image As Long,
ByRef FacePosition As TFacePosition, ByRef FaceTemplate As
Byte) As Long

Java Syntax:

int FSDK.GetFaceTemplateInRegion (HImage Image, TFacePosition
FacePosition, FSDK FaceTemplate.ByReference FaceTemplate);

Android Syntax:

int FSDK.GetFaceTemplateInRegion (HImage Image, TFacePosition
FacePosition, FSDK FaceTemplate FaceTemplate);

Clmage Syntax:

byte[] FSDK.CImage.GetFaceTemplateInRegion (ref
FSDK.TFacePosition FacePosition);

Parameters:

Image - handle of the image from which to extract the face template.

FacePosition — pointer to the face position structure.

FaceTemplate - pointer to the FSDK_FaceTemplate structure, used to receive the face
template.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.GetFaceTemplate (image: Image, facePosition:
FacePosition) -> FaceTemplate;

def Image.GetFaceTemplate (facePosition: FacePosition = None) -
> FaceTemplate;

Return Value:

The FaceTemplate object.

FSDK_GetFaceTemplateUsingEyes Function
Extracts a face template using the detected eye centers.

The function receives eye centers coordinates detected by the FSDK_DetectFacialFeatures,
FSDK_DetectFacialFeaturesinRegion, FSDK_DetectEyes or FSDK_DetectEyesinRegion
functions and extracts a face template. Face detection, facial feature detection, and eye centers
detection are not performed. This function can be useful when facial features or eye centers for
a specific face are already detected. The function returns no error if the face is not clearly

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 73

visible, since it assumes that if the face and its facial features or eye centers are already detected,
the face is of sufficient quality.

Note that the FSDK_GetFaceTemplate, FSDK_GetFaceTemplateInRegion and
FSDK_GetFaceTemplateUsingFeatures functions return templates that could be matched with
higher accuracy, so it is recommended to use these functions instead.

C++ Syntax:

int FSDK GetFaceTemplateUsingEyes (HImage Image, FSDK Features*
eyeCoords, FSDK FaceTemplate* FaceTemplate);

Delphi Syntax:

function FSDK GetFaceTemplateUsingEyes (Image: HImage;
eyeCoords: PFSDK Features; FaceTemplate: PFSDK FaceTemplate) :
integer;

C# Syntax:

int FSDK.GetFaceTemplateUsingEyes (int Image, ref FSDK.TPoint[]
eyeCoords, out byte[] FaceTemplate);

VB Syntax:

Function FSDKVB GetFaceTemplateUsingEyes (ByVal Image As Long,
ByRef eyeCoords As TPoint, ByRef FaceTemplate As Byte) As Long

Java Syntax:

int FSDK.GetFaceTemplateUsingEyes (HImage Image, FSDK Features
eyeCoords, FSDK FaceTemplate.ByReference FaceTemplate) ;

Android Syntax:

int FSDK.GetFaceTemplateUsingEyes (HImage Image, FSDK Features
eyeCoords, FSDK FaceTemplate FaceTemplate);

Clmage Syntax:

byte[] FSDK.CImage.GetFaceTemplateUsingEyes (ref FSDK.TPoint/[]
eyeCoords) ;

Parameters:

Image - handle of the image to extract the face template from.

eyeCoords — pointer to the FSDK_Features array containing eye centers coordinates.
FaceTemplate — pointer to the FSDK_FaceTemplate structure for receiving the face
template.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.GetFaceTemplateUsingEyes (image: Image, eyesCoord:
Eyes) -> FaceTemplate;

Return Value:
The FaceTemplate object.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 74

FSDK_GetFaceTemplateUsingFeatures Function

Extracts a face template using the detected facial feature coordinates.

The function receives facial feature coordinates detected by the FESDK_DetectFacialFeatures or
FSDK_DetectFacialFeaturesinRegion functions and extracts a face template. Face detection,
facial feature detection, and eye centers detection are not performed. This function can be useful
when facial features for a specific face are already detected. The function produces no error if
the face is not clearly visible, since it assumes that if the face and its facial features are already
detected, the face is of sufficient quality.

The function determines if facial features, starting with the 2nd, are equal to zero or
uninitialized. In this case, the functions calls FSDK_GetFaceTemplateUsingEyes instead.

C++ Syntax:

int FSDK GetFaceTemplateUsingFeatures (HImage Image,
FSDK Features* FacialFeatures, FSDK FaceTemplate*
FaceTemplate) ;

Delphi Syntax:

function FSDK GetFaceTemplateUsingFeatures (Image: HImage;
FacialFeatures: PFSDK Features; FaceTemplate:
PFSDK FaceTemplate): integer;

C# Syntax:

int FSDK.GetFaceTemplateUsingFeatures (int Image, ref
FSDK.TPoint|[] FacialFeatures, out bytel[] FaceTemplate);

VB Syntax:

Function FSDKVB GetFaceTemplateUsingFeatures (ByVal Image As
Long, ByRef FacialFeaturesAs TPoint, ByRef FaceTemplate As
Byte) As Long

Java Syntax:

int FSDK.GetFaceTemplateUsingFeatures (HImage Image,
FSDK Features FacialFeatures, FSDK FaceTemplate.ByReference
FaceTemplate) ;

Android Syntax:

int FSDK.GetFaceTemplateUsingFeatures (HImage Image,
FSDK Features FacialFeatures, FSDK FaceTemplate FaceTemplate);

Clmage Syntax:

byte[] FSDK.CImage.GetFaceTemplateUsingFeatures (ref
FSDK.TPoint[] FacialFeatures);

Parameters:

Image - handle of the image to extract the face template from.
FacialFeatures — pointer to the FSDK_Features array containing facial feature
coordinates.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 75

FaceTemplate — pointer to the FSDK_FaceTemplate structure for receiving the face
template.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.GetFaceTemplateUsingFeatures (image: Image,
facialFeatures: FacialFeatures) -> FaceTemplate;

Return Value:
The FaceTemplate object.

FSDK_MatchFaces Function

Match two face templates. The returned value determines the similarity of the faces.
C++ Syntax:

int FSDK MatchFaces (FSDK FaceTemplate* FaceTemplatel,
FSDK FaceTemplate* FaceTemplateZ, float* Similarity);

Delphi Syntax:

function FSDK MatchFaces (FaceTemplatel, FaceTemplatel:
PFSDK FaceTemplate; Similarity: PSingle): integer;

C# Syntax:

int FSDK.MatchFaces (ref byte[] FaceTemplatel, ref bytel]
FaceTemplate2, ref float Similarity);

VB Syntax:

Function FSDKVB MatchFaces (ByRef FaceTemplatel As Byte, ByRef
FaceTemplateZ As Byte, ByRef Similarity As Single) As Long

Java Syntax:

int FSDK.MatchFaces (FSDK FaceTemplate.ByReference
FaceTemplatel, FSDK FaceTemplate.ByReference FaceTemplatelZ,
float Similarity/[]):;

Android Syntax:

int FSDK.MatchFaces (FSDK FaceTemplate FaceTemplatel,
FSDK FaceTemplate FaceTemplateZ2, float Similarity/[]);

Parameters:

FaceTemplatel - pointer to the FSDK_FaceTemplate structure, using the first template
for comparison.

FaceTemplate2 — pointer to the FSDK_FaceTemplate structure, using the second template
for comparison.

Similarity - pointer to a float value, used to receive the similarity of the face templates.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 76

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_INVALID_TEMPLATE if any of the
face templates is in an invalid format.

Returns FSDKE_UNSUPPORTED_TEMPLATE_VERSION if any of the templates is
created with an unsupported version of FaceSDK.

Python Syntax:

def FSDK.MatchFaces (faceTemplatel: FaceTemplate,
faceTemplatelZ: FaceTemplate) -> float;

def FaceTemplate.MatchFaces (faceTemplate: FaceTemplate) ->
float;

Return Value:
The similarity of the face templates.

FSDK_GetMatchingThresholdAtFAR Function

This function returns the threshold value for similarity to determine if two matched templates
belong to the same person at a given FAR (False Acceptance Rate) value. The FAR determines
the acceptable error rate when two different people’s templates are mistakenly recognized as
the same person. Decreasing FAR leads to an increase in FRR — i.e. with low FAR it becomes
more probable that two templates from the same person will be determined as belonging to
different people.

C++ Syntax:

int FSDK GetMatchingThresholdAtFAR (float FARValue, float*
Threshold) ;

Delphi Syntax:

function FSDK GetMatchingThresholdAtFAR(FARValue: single; var
Threshold: single): integer;

C# Syntax:

int FSDK.GetMatchingThresholdAtFAR (float FARValue, ref float
Threshold) ;

VB Syntax:

Function FSDKVB GetMatchingThresholdAtFAR (ByVal FARValue As
Single, ByRef Threshold As Single) As Long

Java and Android Syntax:

int FSDK.GetMatchingThresholdAtFAR (float FARValue, float
Threshold[]) ;

Parameters:

FARValue - the desired FAR value. Varies from 0.0 (means 0%) to 1.0 (means 100%).
Threshold — pointer to a float variable to store the calculated Threshold value.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 77

Return Value:
Returns FSDKE_OK if successful.

Example

FSDK FaceTemplate templatel, templateZ2;

float MatchingThreshold, Similarity;
FSDK GetMatchingThresholdAtFAR(0.02, &MatchingThreshold);

FSDK GetFaceTemplate (imgl, &templatel);
FSDK GetFaceTemplate (img2, &template2);
FSDK MatchFaces (&templatel, &template2, &Similarity);
if (Similarity > MatchingThreshold)
printf ("Same Person\n");
else
printf ("Different Person\n");

Python Syntax:

def FSDK.GetMatchingThresholdAtFAR(FRRValue: float) -> float;

Return Value:
The calculated Threshold value.

FSDK_GetMatchingThresholdAtFRR Function

This function returns the threshold value for similarity to determine if two matched templates
belong to the same person at a given FRR (False Rejection Rate) value. The FRR determines
the acceptable error rate when two templates of the same person are identified as belonging to
different people. Decreasing FRR leads to an increase in FAR — i.e. with low FRR it becomes
more probable that two different people’s templates will be recognized as the same person.

C++ Syntax:

int FSDK GetMatchingThresholdAtFRR (float FRRValue, float*
Threshold) ;

Delphi Syntax:

function FSDK GetMatchingThresholdAtFRR(FRRValue: single; var
Threshold: single): integer;

C# Syntax:

int FSDK.GetMatchingThresholdAtFRR (float FRRValue, ref float
Threshold) ;

VB Syntax:

Function FSDKVB GetMatchingThresholdAtFRR (ByVal FRRValue As
Single, ByRef Threshold As Single) As Long

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 78

Java and Android Syntax:

int FSDK.GetMatchingThresholdAtFRR (float FRRValue, float
Threshold/[]);

Parameters:

FRRValue -—the desired FRR value. Varies from 0.0 (means 0%) to 1.0 (means 100%).
Threshold - pointer to a float variable, used to store the calculated Threshold value.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.GetMatchingThresholdAtFRR(FRRValue: float) -> float;

Return Value:
The calculated Threshold value.

Gender, Age and Facial Expression Recognition

The SDK recognizes the gender, age and facial expressions of subjects. It recognizes if a smile
is present and if the eyes are open or closed. To accomplish this, first you must to detect facial
features in an image, and then pass these features to the
FSDK_DetectFacial AttributeUsingFeatures function, specifying the "Gender™", "Age" or

the "Expression" attribute.

FSDK_DetectFacialAttributeUsingFeatures Function

Detects an attribute of a face, and returns the Values of a particular attribute, and Confidences
in these Values.

Each facial attribute has a number of Values, and each Value has an associated Confidence. A
Value is a string, and a Confidence is a float from 0 to 1, which represents confidence level of
this particular value of the attribute.

The following attribute names are supported:
"Liveness" —to getthe liveness probability (see the Passive Liveness section).

"Gender" —to detect the gender of a face. The attribute has "Male ' and "Female " values.
"Age" —to detect the age of a face. The attribute has "Age " value.

"Expression" — to detect the expression of a face. The attribute has "Smile" and
"EyesOpen" values. The Values and their Confidences are returned in a string of the
following format:

"Valuel=Confidencel [;Value2=Confidence2[;..]]1"

For example, when calling the function with the "Gender " attribute, the following string may
be returned:

"Male=0.95721;Female=0.04279"

It means that the subject has male gender with a confidence of 95.7%, and female gender with
a confidence of 4.3%.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 79

When calling the function with the "Age " attribute, the following string may be returned:
"Age=3T7"

When calling the function with the "Expression attribute, the following string may be
returned:

"Smile=0.987;EyesOpen=0.9952"

It means that the subject smiles with a confidence of 98.7%, and the eyes are open with a
confidence of 99.5%. Y ou may use several attributes in a single function call separated by "; ".
For example, if AttributeName IS "Gender; Age; Expression', the result may
be the following:

"™Male=0.95721;Female=0.04279;Age=37;Smile=0.987;EyesOpen=0.995

n

You may use the FSDK_GetValueConfidence to parse the returned string and retrieve the
Confidences for individual Values.

C++ Syntax:

int FSDK DetectFacialAttributeUsingFeatures (HImage Image,
const FSDK Features * FacialFeatures, const char *
AttributeName, char * AttributeValues, long long
MaxSizeInBytes) ;

Delphi Syntax:

function FSDK DetectFacialAttributeUsingFeatures (Image:
HImage; FacialFeatures: PFSDK Features; AttributeName,
AttributeValues: PAnsiChar; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.DetectFacialAttributeUsingFeatures (int Image, ref

TPoint [] FacialFeatures, string AttributeName, out string
AttributeValues, long MaxSizeInBytes);
VB Syntax:

Function FSDKVB DetectFacialAttributeUsingFeatures (ByVal Image
As Long, ByRef FacialFeatures As TPoint, ByVal AttributeName
As String, ByRef AttributeValues As String, ByVal
MaxSizeInBytes As Currency) As Long

Java and Android Syntax:

int FSDK.DetectFacialAttributeUsingFeatures (int Image,
FSDK Features FacialFeatures, String AttributeName, String
AttributeValues|[], long MaxSizeInBytes);

Parameters:

Image —HImage handle in which to detect the attribute.

FacialFeatures — pointer to the FSDK_Features array containing facial feature
coordinates.

AttributeName — name of the attribute. You may specify several attributes separated by

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 80

AttributeValues — pointer to the null-terminated string that will receive the attribute
Names and their Confidences.
MaxSizeInBytes —amount of memory allocated for the output string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_INSUFFICIENT_BUFFER_SIZE if there
is not enough room to store the output string; however, the output string still fills up all the
space available.

Python Syntax:

def FSDK.DetectFacialAttributeUsingFeatures (image: Image,
facialFeatures: Features, attributeName: str, ret dict: bool =
False) -> str;

def Image.DetectFacialAttributeUsingFeatures (facialFeatures:
Features, attributeName: str, ret dict: bool = False) -> str;

Return Value:

If ret_dict if False (default) the return value is a string object with the attribute Names and their
Confidence.

If ret_dict is True the return value is a dict object with the attribute Names as keys and
Confidence floats as values.

FSDK_GetValueConfidence Function

Parses the string returned by FESDK_DetectFacialAttributeUsingFeatures or
FSDK GetTrackerFacialAttribute, and returns the Confidence in an individual Value.

C++ Syntax:

intFSDK GetValueConfidence (const char * AttributeValues, const
char * Value, float * Confidence);

Delphi Syntax:

function FSDK GetValueConfidence (AttributeValues, Value:
PAnsiChar; Confidence: PSingle): integer;

C# Syntax:

int FSDK.GetValueConfidence(string AttributeValues, string
Value, ref float Confidence);

VB Syntax:

Function FSDKVB GetValueConfidence (ByVal AttributeValues As
String, ByVal Value As String, ByRef Confidence As Single) As
Long

Java and Android Syntax:

int FSDK.GetValueConfidence (String AttributeValues, String
Value, float Confidencel]):;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 81

Parameters:

AttributeValues — pointer to the null-terminated string containing the attribute Values
and their Confidences.

Value — pointer to the null-terminated string containing the desired Value.

Confidence — pointer to the float variable to store the Confidence in a Value.

Return Value:
Returns FSDKE_OK if successful.
Example:

char AttributeValues[1024];
FSDK DetectFacialAttributeUsingFeatures (image, features,
"Gender", AttributeValues, sizeof (AttributeValues));

float ConfidenceMale = 0.0f;
float ConfidenceFemale = 0.0f;

FSDK GetValueConfidence (AttributeValues, "Male",
&ConfidenceMale) ;

FSDK GetValueConfidence (AttributeValues, "Female",
&ConfidenceFemale) ;

Python Syntax:

def FSDK.GetValueConfidence (attributeValues: str, value: str)
-> float;

Return Value:

The Confidence value.
Use DetectFacialAttributeUsingFeatures function with ret dict argument
set to True to get a dict object with Confidence float values.

Liveness Detection

The SDK offers several approaches to detect spoofing attempts (when a photo or a video is
presented to the camera instead of a real person). There are passive liveness detection, active
liveness detection, and thermal face detection. A combination of several approaches provides
the best reliability.

iBeta certified liveness add-on provides enhanced passive liveness detection.

Passive Liveness

Passive liveness detecion is the most sophisticated anti-spoofing technology. It does not require
any special hardware, nor does it ask users to perform any actions to prove the liveness - it
works just by analyzing images.

Passive liveness detection works with both still images and videos. The probability of a subject
being live is available as the L.iveness facial attribute. For still images, the attribute can be
rerieved with the FSDK_DetectFacialAttributeUsingFeatures function. For videos, use the
FSDK_GetTrackerFacialAttribute function of Tracker API. To enable passive livenes detection
in Tracker API, make sure to pass the "DetectLiveness=true" parameter to Tracker API.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 82

Using Tracker API for passive liveness detection usually improves the reliability of the liveness
detection, as liveness is detected in a number of facial appearances on consecutive video frames.
The resulting liveness probability p is calculated as a soft minimum:

p= Zin=1 pieiapi ,

N __ap
e 1
i=1

where pj is the liveness probability detected on the frame i; n is the number of frames.
The following Tracker parameters can be used to adjust passive liveness detection:
AttributeLivenessSmoothingAlpha — the a parameter. The default value is 1.

LivenessFramesCount — the minimum number of frames required before the liveness
attribute is calculated. The default value is 15.

Note that an RGB color image is required to perform the passive liveness check, grayscale
images aren’t supported.

Active Liveness

Active liveness check requires Tracker API, as demonstrated in the ActiveLiveness samples.
Liveness is verified by asking the user to perform a set of actions in front of the camera.

Thermal Face Detection

Thermal face detection can also be used to verify liveness. In a typical scenario, the system is
equipped with a thermal camera and an ordinary "visual" camera. Both cameras should capture
the same field of view. To ensure a face is live, it must be detected in the same place both by
the visual and the thermal camera. For more information see the Face Detection on Thermal
Images section.

iBeta Certified Liveness Add-on
Available for Linux, Windows (x64), Android and iOS.

iBeta certified Liveness add-on for FaceSDK passed Level 1 iBeta Presentation Attack
Detection (PAD) conformance testing with a perfect PAD score. iBeta Quality Assurance
conducted Presentation Attack Detection (PAD) testing in accordance with ISO/IEC 30107-3.
iBeta is accredited by NIST/NVLAP (NVLAP Lab Code: 200962) to test and provide results
to this PAD standard.

During the evaluation, iBeta researchers conducted about a thousand presentation attacks using
subjects’ authentic biometric samples to create artifacts. None of these presentation attacks
were successful, resulting in an Attack Presentation Classification Error Rate (APCER) of 0%.

As a uniquely accredited third-party biometrics testing lab, iBeta Quality Assurance ensures
that products meet the highest standards of functionality and security. The iBeta certification
guarantees the most precise liveness and anti-spoofing checks for images and videos.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 83

Sample projects are available in samples\ibeta liveness add-on directory.

Activation

iBeta liveness add-on requires a license key, which should be installed on the target Windows,
or Linux system before starting your application.

If the key is not present you will be unable to use the iBeta add-on. The license key is a file
with the .v2c extension, you can find it in the sample’s license directory. To install it, run the
install_license utility that is bundled along with the key: install_license *.v2c

Initialization

To initialize the iBeta add-on you should call the following function:
int res = FSDK SetParameter ("LivenessModel", "external");

The returned value should be equal to FSDKE_OK.
Possible returned error codes:

FSDKE_PLUGIN_NO_PERMISSION | You don’t have permission to use the iBeta add-on
(e.g., incorrect FaceSDK license key type)

FSDKE_PLUGIN NOT_LOADED Something went wrong during the add-on loading.
Ensure that all necessary files are available and
exist in the application’s working directory.

General usage

To check liveness on an image, load the image using the FSDK_LoadlmageFromFile
function, detect facial features, and then obtain the liveness attribute using these features.
Below is a code sample in C++:

HImage img;
FSDK Features features;
char attributes[512];

float liveness = 0.0f;
float image quality = 0.0f;
const char* image = “image.png”;

FSDK LoadImageFromFile (&img, image);

FSDK DetectFacialFeatures (img, &features);

FSDK DetectFacialAttributeUsingFeatures (img, &features,
"Liveness", attributes, 512);

FSDK GetValueConfidence (attributes, "Liveness", &liveness);
FSDK GetValueConfidence (attributes, "ImageQuality",

&image quality);

Note that you should check the returning values of every function.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 84

The main factor in determining whether the image is live or spoofed is the liveness value
(probability). An image can be considered live if the liveness value is higher than 0.5. An
additional factor to consider is the image_quality value, which measures how "appropriate™
the image is for the liveness check. Images with quality values lower than 0.5 should
generally be rejected. Both measurements are float values in the range of [0, 1].

Sometimes an image may be rejected. If this happens, you can get a liveness check error
message in the attributes variable after the "LivenessError=" prefix. An example of error
parsing in C++:

string e = "LivenessError=";

if (string(attributes).find(e) != string::npos) {
string livenessErrorMessage =

string(attributes) .substr(e.length());

}

When using the Tracker API with the iBeta add-on, you should set the following parameters:

FSDK SetTrackerParameter (tracker, "DetectLiveness", "true");
FSDK SetTrackerParameter (tracker, "SmoothAttributeLiveness",
"false");

FSDK SetTrackerParameter (tracker,
"AttributelivenessSmoothingAlpha", "1");

FSDK SetTrackerParameter (tracker, "LivenessFramesCount",
"1");

Sample code in C++ for Tracker API:

HImage image;

char attributes[1024];

char err[10247];

float liveness = 0.0f;

float image quality = 0.0f;
std::string e = "LivenessError=";

while (!is finished) {

FSDK FeedFrame (tracker, camera, image, &count, ids, 256 *
sizeof (long long));

FSDK GetTrackerFacialAttribute (tracker, camera, 1ids[0],
"Liveness", attributes, 1024);

FSDK GetValueConfidence (attributes, "Liveness",
&liveness) ;

FSDK GetValueConfidence (attributes, "ImageQuality",
&image quality);

FSDK GetTrackerFacialAttribute (tracker, camera, 1ids[0],
"LivenessError", err, 1024);

string livenessError = string(err) .substr(e.length());

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 85

iBeta liveness add-on files

To use the iBeta add-on, ensure that all necessary files are in the application's working
directory. Below is a list of required files and directories for the supported platforms:

Windows Linux Android i0S

data data app/src/main/assets/d | FaceSDK/data
facesdk.dll libtbb.so.X ata FaceSDK/FaceSdk.fra
IBetaPlugin.dll libopenvino.so.X app/src/main/libs/exte | mework

idliveface.dll libopenvino_ir_frontend | rnal.jar FaceSDK/libfsdk-
openvino.dll .50.X app/src/main/jniLibs/ | static.a
openvino_intel_cpu_pl | libfsdk.so arme64-v8a/libfsdk.so | FaceSDK/LuxandFace
ugin.dll liblBetaPlugin.so app/src/main/jniLibs/ | SDK.h
openvino_ir_frontend. | libidliveface.so arme4-

dil libopenvino_intel_cpu_p | v8a/liblBetaPlugin.so

tbb12.dll lugin.so app/src/main/jniLibs/

plugins.xml plugins.xml arme4-

v8a/libidliveface.so
app/src/main/jniLibs/
arme4-
v8a/libtensorflowlite
C.S0

(same file structure
for armeabi-v7a and
x86_64)

Image requirements

Image format

Lossless formats are preferred, as lossy compression can negatively affect accuracy. If you
use lossy formats, make sure the compression is at a minimal level. For example, for JPEG,
70 is the lowest practical compression level.

Image resolution

The iBeta Liveness add-on processes the area around the face, so the optimal resolution will
depend on the image composition. Assuming a portrait orientation with the face centered and
occupying at least 1/4 of the image area, the recommended image resolution range is from
600x800 to 960x1280.

Image composition

e There should be only one main face in the image. It should be fully visible within the
frame, fully open, and without any occlusions. Cropping is not allowed. Small faces in
the background are not taken into account.

e The minimum size of a face box that can be processed is 150x150 pixels.

o The padding between the face box and the image's borders should be at least 15 pixels.

e The distance between the pupils on the face should be at least 50 pixels.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 86

e The out-of-plane rotation angle (face pitch and yaw) should be no more than +30
degrees.

Images that do not meet these conditions will be rejected. Other factors that can affect
accuracy include:

« Motion blur can significantly increase BPCER (the rate of errors classifying a genuine
person as a spoof).

o Texture filtering can significantly increase APCER (the rate of errors allowing
impostors through).

e Spotlights on the face and nearby surroundings can significantly increase BPCER.

o Poorly lit environments and colored lighting can significantly increase BPCER.

o Fish-eye lenses are not supported.

e Sunglasses may cause confusion.

Sample images
This section contains image samples categorized into three groups:
e Good samples: Images with optimal face size, positioning, and lighting conditions.
o Acceptable but suboptimal samples: Images that are acceptable but were taken under
less-than-ideal conditions.

e Incorrect samples: Images that are not acceptable for processing.

Good examples

Correct, but not good enough samples
A distance between the camera and the face is too great:

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 87

The face is partially obscured by headwear:

Incorrect samples

Poor lighting conditions:

Headwear obscures the face too much:

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

88

Incorrect head rotation:

The face is too close to the camera:

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

89

The face is positioned incorrectly, partially out of frame:

Configuration files

It is possible to change internal parameters used to validate the image. Lower values will
result in fewer images being rejected, but accuracy may degrade for such images. The
parameters are defined in the data/preprocessing/face_params.conf file.

Available parameters:

e min_face_size: Minimum width and height of the face box, in pixels (150 - default).
e min_face_size_relative: Minimum relative width and height of the face box, as a ratio
of the face's width and height to the image's width and height. Defined as a value
between 0 and 1. For example, if the value is 0.25, one side of the face box should be

at least a quarter of the image's corresponding side (0.15 - default).

o detectable_face size relative: Similar to the parameter above, but if the size of the
face box is smaller than this value, the face is simply skipped. This is used as a filter
for small faces in the background (0.075 - default).

e min_pupillary_distance: Minimum distance between the pupils on the face, in pixels
(50 - default).

e min_face_padding: Minimum distance from the image's border to the face box, in
pixels (15 - default).

o max_roll: Maximum roll angle of the head, in degrees (45 - default).

e max_yaw: Maximum yaw angle of the head, in degrees (30 - default).

e max_pitch: Maximum pitch angle of the head, in degrees (30 - default).

Working with Cameras

The library offers a set of functions to work with DirectShow/v4l2-compatible web cameras
and IP cameras with an MJPEG interface. The functions allow single frames to be retrieved
from a camera one-by-one; they are stored in HImage descriptors. The application usually grabs
frames in a loop, displaying each frame in its window and performing manipulations with
images (such as face detection).

Web camera functions are available only for Windows and Linux platforms. IP camera
functions are available for all platforms.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 90

Android and iOS samples include platform-specific code working with cameras on phones and

tablets.

Data Types

There are data types to store the information about video formats. Note that the names of video

cameras are stored in wide char format (each char occupies two bytes).

C++ Declaration:

typedef struct {
int Width;
int Height;
int BPP;
} FSDK VideoFormatInfo;

typedef enum {
FSDK MJPEG
} FSDK VIDEOCOMPRESSIONTYPE;

Delphi Declaration:

FSDK VideoFormatInfo = record
Width: integer;
Height: integer;
BPP: integer;
end;
PFSDK VideoFormatInfo = "FSDK VideoFormatInfo;
FSDK VideoFormatInfoArray =

array[0..255] of FSDK VideoFormatInfo;
PFSDK VideoFormatInfoArray = "FSDK VideoFormatInfoArray;

FSDK Cameralist = arrayl[0..255] of PWideChar;
PFSDK Cameralist = "FSDK Cameralist;

FSDK_VIDEOCOMPRESSIONTYPE = (
FSDK_MJPEG
) ;

VB Declaration:

Type FSDK VideoFormatInfo
Width As Long
Height As Long
BPP As Long

End Type

Enum FSDK VIDEOCOMPRESSIONTYPE
FSDK_MJPEG
End Enum

Java Declaration:
The class FSDK VideoFormatInfo has the following properties:

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

91

public int Width, Height, BPP;

class FSDK VideoFormats {
public FSDK VideoFormatInfo.ByValue formats[];

}

class TCameras {
public String cameras]|];

}

Java and Android Declaration:

class HCamera {
protected int hcamera;

}

class FSDK VIDEOCOMPRESSIONTYPE ({
public static final int FSDK MJPEG = 0;

}

Python Declaration:

class Camera (ctypes.Structure) :

fields = ("handle", c int), # FSDK camera handle

def init (self, cameraName=None) : # cameraName 1is for
windows only

def Open(self, cameraName) ;

def Close(self)

def GrabFrame (self)

for windows and linux only
class VideoFormatInfo (ctypes.Structure) :

fields = ("width", c _int), ("Height", c _int),
("FormatIndex", c_ int)

FSDK_InitializeCapturing Function

This function initializes the capturing process (but does not open a camera). This function
should be called in a certain thread that works with cameras. Note that on Windows platforms
this function initializes COM in the thread; if you already initialized COM, you must not call
this function, and you must not call ESDK_FinalizeCapturing.

C++ Syntax:

int FSDK InitializeCapturing(void);

Delphi Syntax:

‘function FSDK InitializeCapturing: integer;

C# Syntax:

‘int FSDKCam.InitializeCapturing() ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 92

VB Syntax:

‘Function FSDKVB InitializeCapturing() As Long

Java Syntax:

‘int FSDKCam.InitializeCapturing() ;

Android Syntax:

‘int FSDK.InitializeCapturing() ;

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.InitializeCapturing()

Return Value:
None.

FSDK_FinalizeCapturing Function

This function finalizes the capturing process, initialized by the FSDK_InitializeCapturing
function (and finalizes COM on Windows platforms). If you already finalized COM, you must

not call this function.
C++ Syntax:

int FSDK FinalizeCapturing(void);

Delphi Syntax:

‘function FSDK FinalizeCapturing: integer;

C# Syntax:

‘int FSDKCam.FinalizeCapturing () ;

VB Syntax:

‘Function FSDKVB FinalizeCapturing() As Long

Java Syntax:

‘int FSDKCam.FinalizeCapturing() ;

Android Syntax:

‘int FSDK.FinalizeCapturing();

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.FinalizeCapturing();

Return Value:
None.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

93

FSDK_SetCameraNaming Function

Sets the retrieval format for the FSDK_GetCameralL.ist function. Depending on the value of the
argument, either web camera names (by default) or their unique 1Ds (Device Path) are returned.
Device Path may be necessary if the system has several web cameras from the same
manufacturer that have the same name. This function does not support IP cameras.

C++ Syntax:

int FSDK SetCameraNaming (bool UseDevicePathAsName) ;

Delphi Syntax:

function FSDK SetCameraNaming (UseDevicePathAsName: boolean) :
integer;

C# Syntax:

int FSDKCam.SetCameraNaming (bool UseDevicePathAsName)

VB Syntax:

Function FSDKVB SetCameraNaming (ByVal UseDevicePathAsName As
Boolean) As Long

Java Syntax:

int FSDKCam.SetCameraNaming (boolean UseDevicePathAsName) ;

Parameters:
UseDevicePathAsName - Sets a retrieval format for the FSDK GetCameraList function.

FALSE: FSDK_GetCameraL ist returns the list of names for cameras installed in the system;

TRUE: ESDK_GetCameralL.ist returns the list of unique device paths of these cameras.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.SetCameraNaming (useDevicePathAsName: bool) :

Return Value:
None.

FSDK_GetCameralist Function

This function retrieves the list of web cameras available in the system. The name of each
camera is stored in wide char format (each character occupies two bytes). The function does
not support IP cameras. The camera list must be destroyed by calling the
FSDK_FreeCameralL.ist function after the list is no longer needed.

C++ Syntax:

int FSDK GetCameralist (wchar t*** CameralList, int*
CameraCount) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 94

Delphi Syntax:

function FSDK GetCameralList (CameralList: PWideChar; CameraCount:
Pinteger) : integer;

C# Syntax:

int FSDKCam.GetCameralist (out string[] CameralList, out int
CameraCount)

VB Syntax:

Function FSDKVB GetCameralist (ByRef CameralList As Variant,
ByRef CameraCount As Long) As Long

Java Syntax:

int FSDKCam.GetCameralist (TCameras CameralList, int
CameraCount/[]) ;

Parameters:

Cameralist — pointer to wchar_t** variable to store the camera list.
CameraCount - pointer to integer variable to store the count of cameras in the system.

Return Value:
Returns FSDKE_OK if successful.

Example

wchar t** Cameralist;
int CameraCount;

FSDK InitializeCapturing();
if (FSDK GetCameralList (&Cameralist, &CameraCount)==FSDKE OK)
for (int i=0; i<CameraCount; i++)
wprintf (L"camera: %$s\n", Cameralist[i]);
printf ("%d camera(s) found.\n", CameraCount);
FSDK FinalizeCapturing();

Python Syntax:

class CameraName (str) ;

def FSDK.ListCameraNames () -> List[CameraName];

Return Value:

The list of CameraName objects.

Note:

The CameraName class is a string with an extra field devicePath.

FSDK_GetCameralistEx Function

This function retrieves the list of names and the device paths of the web cameras available in
the system. The name and the device path of each camera are stored in wide char format (each

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 95

character occupies two bytes) at the same indices at the corresponding arrays. The function does
not support IP cameras. Both lists must be destroyed by calling the FSDK_FreeCameraL ist
function after they are no longer needed.

C++ Syntax:

int FSDK GetCameralListEx (wchar t*** CameraNameList, wchar t***
CameraDevicePathList, int* CameraCount) ;

Delphi Syntax:

function FSDK GetCameralListEx (CameraNameList: PWideChar;
CameraDevicePathList: PWideChar, CameraCount: PInteger):
integer;

C# Syntax:

int FSDKCam.GetCameralistEx (out string[] CameraNameList, out
string[] CameraDevicePathList, out int CameraCount)

VB Syntax:

Function FSDKVB GetCameralistEx (ByRef VCameraNameList As
Variant, ByRef VCameraDevicePathList As Variant, ByRef
CameraCount As Long) As Long

Java Syntax:

int FSDKCam.GetCameralistEx (TCameras CameraNameList, TCameras
CameraDevicePathList, int CameraCount/[]);

Parameters:

CameraNameList - pointer to wchar_t** variable to store the camera name list.
CameraDevicePathList - pointer to wchar_t** variable to store the camera device path
list.

CameraCount - pointer to integer variable to store the number of cameras in the system.

Return Value:
Returns FSDKE_OK if successful.

FSDK_FreeCameralist Function

This function frees the list of web cameras obtained from the FSDK GetCameralList or
FSDK_GetCameraListEx function. The call of the function is not required in .NET, VB and
Java.

C++ Syntax:

int FSDK FreeCameralist (wchar t*** CameralList, int
CameraCount) ;

Delphi Syntax:

function FSDK FreeCameralist (CameralList: Pointer; CameraCount:
integer): integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 96

Parameters:
CameralList — pointer to wchar_t** variable where the camera list is stored.

CameraCount — the count of cameras in the system, obtained from the
FSDK_GetCameraList or FSDK_GetCameraListEx function.
Note:

You must call FSDK_FreeCameraL ist for CameraNameList and CameraDevicePathList, if you
were using FSDK_GetCameraL istEX.

Return Value:
Returns FSDKE_OK if successful.

FSDK_GetVideoFormatList Function

This function returns the list of video formats supported by a given camera. This function does
not support IP cameras.

C++ Syntax:

int FSDK GetVideoFormatList (wchar t* CameraName,
FSDK VideoFormatInfo** VideoFormatList, int*
VideoFormatCount) ;

Delphi Syntax:

function FSDK GetVideoFormatList (CameraName: PWideChar;
VideoFormatList: PFSDK VideoFormatInfo; VideoFormatCount:
Pinteger) : integer;

C# Syntax:

int FSDKCam.GetVideoFormatList (string CameraName, out
FSDKcam.VideoFormatInfo[] VideoFormatList, out int
VideoFormatCount)

VB Syntax:

Function FSDKVB GetVideoFormatList (ByVal CameraName As String,
ByRef VideoFormatList As Variant, ByRef VideoFormatCount As
Long) As Long

Java Syntax:

int FSDKCam.GetVideoFormatList (String CameraName,
FSDK VideoFormats VideoFormatList, int VideoFormatCount[]);

Parameters:

CameraName — pointer to name of desired video camera.

VideoFormatList — pointer to FSDK_VideoFormatinfo* variable to store the list of video
formats.

VideoFormatCount — pointer to integer variable to store the count of video formats.

Return Value:
Returns FSDKE_OK if successful.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 97

FSDK_FreeVideoFormatList Function

This function frees the list of video formats obtained from FSDK_GetVideoFormatL.ist.Calling
this function is not required in .NET, VB and Java.

C++ Syntax:

int FSDK FreeVideoFormatList (FSDK VideoFormatInfo *
VideoFormatList) ;

Delphi Syntax:

function FSDK FreeVideoFormatList (VideoFormatList: Pointer):
integer;

Parameters:

VideoFormatList — pointer to FSDK_VideoFormatinfo* variable where the list of video
formats is stored.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.ListVideoFormats (cameraName: str) ->
List[VideoFormatInfo];

Return Value:
The list of VideoFormatInfo objects.

FSDK_SetVideoFormat Function

The function sets the format of camera output. The function does not support IP cameras.
C++ Syntax:

int FSDK SetVideoFormat (wchar t* CameraName,
FSDK VideoFormatInfo VideoFormat) ;

Delphi Syntax:

function FSDK SetVideoFormat (CameraName: PWideChar;
VideoFormat: FSDK VideoFormatInfo): integer;

C# Syntax:

int FSDKCam.SetVideoFormat (ref string CameraName,
FSDKcam.VideoFormatInfo VideoFormat) ;

VB Syntax:

Function FSDKVB SetVideoFormat (ByVal CameraName As String,
ByRef VideoFormat As FSDK VideoFormatInfo) As Long

Java Syntax:

int FSDKCam.SetVideoFormat (String CameraName,
FSDK VideoFormatInfo.ByValue VideoFormat);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 98

Parameters:

CameraName — pointer to name of desired video camera.
VideoFormat — desired video format.

Return Value:
Returns FSDKE_OK if successful.

Example

wchar t** Cameralist;

int CameraCount;

FSDK VideoFormatInfo* VideoFormatList;
int VideoFormatCount;

FSDK GetCameralList (&CameralList, &CameraCount);
FSDK GetVideoFormatList (CameralList[0], &VideoFormatList,

&VideoFormatCount) ;
FSDK SetVideoFormat (CameralList[0], VideoFormatList([0]);

Python Syntax:

def FSDK.SetVideoFormat (cameraName: str, videoFormat:
VideoFormatInfo) ;

Return Value:
None.

FSDK_OpenVideoCamera Function

The function opens the web camera of a given name and returns its handle.
C++ Syntax:

int FSDK OpenVideoCamera (wchar t* CameraName, int*
CameraHandle) ;

Delphi Syntax:

function FSDK OpenVideoCamera (CameraName: PWideChar;
CameraHandle: Pinteger): integer;

C# Syntax:

int FSDKCam.OpenVideoCamera (ref string CameraName, ref int
CameraHandle) ;

VB Syntax:

Function FSDKVB OpenVideoCamera (ByVal CameraName As String,
ByRef CameraHandle As Long) As Long

Java Syntax:

int FSDKCam.OpenVideoCamera (String CameraName, HCamera
CameraHandle) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 99

Parameters:

Came raName — pointer to name of web camera to open.
CameraHandle — pointer to integer variable to store the opened camera handle.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.OpenVideoCamera (cameraName: str) -> Camera;

Return Value:

New Camera object.

FSDK_OpenlPVideoCamera Function

This function opens the IP camera at a given URL and returns its handle. You may call the
FSDK_SetHTTPProxy function to set an HTTP proxy for accessing the camera.

C++ Syntax:

int FSDK OpenIPVideoCamera (FSDK VIDEOCOMPRESSIONTYPE
CompressionType, char * URL, char * Username, char * Password,
int TimeoutSeconds, int * CameraHandle) :;

Delphi Syntax:

function FSDK OpenIPVideoCamera (CompressionType:

FSDK VIDEOCOMPRESSIONTYPE, URL: PAnsiChar, Username:
PAnsiChar, Password: PAnsiChar,; TimeoutSeconds: integer;,
CameraHandle: PInteger): integer;

C# Syntax:

int FSDKCam.OpenIPVideoCamera (FSDK VIDEOCOMPRESSIONTYPE
CompressionType, string URL, string Username, string Password,
int TimeoutSeconds, ref int CameraHandle) ;

VB Syntax:

Function FSDKVB OpenlIPVideoCamera (ByVal CompressionType As
FSDK VIDEOCOMPRESSIONTYPE, ByVal URL As String, ByVal Username
As String, ByVal Password As String, ByVal TimeoutSeconds AsS
Long, ByRef CameraHandle As Long) As Long

Java Syntax:

int FSDKCam.OpenIPVideoCamera (int CompressionType, String URL,
String Username, String Password, int TimeoutSeconds, HCamera
CameraHandle) ;

Android Syntax:

int
FSDK.OpenIPVideoCamera (FSDK VIDEOCOMPRESSIONTYPE CompressionTyp
e, String URL, String Username, String Password, int
TimeoutSeconds, HCamera CameraHandle) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 100

Parameters:

CompressionType— the type of video stream (MJPEG by default).

URL - URL of the IP camera to be opened.

Username - |P camera access username.

Password — IP camera access password.

TimeoutSeconds — connection timeout in seconds.

CameraHandle - pointer to integer variable to store the opened camera handle.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.OpenIPVideoCamera (compression: int, URL: str,
userName: str, password: str, timeoutSeconds: int) -> Camera;

Return Value:
New Camera object.

FSDK_SetHTTPProxy Function

This function sets an HTTP proxy to be used with an IP camera. If a proxy is required, the
function should be called before the ESDK_OpenlPVideoCamera function.

C++ Syntax:

int FSDK SetHTTPProxy (char* ServerNameOrIPAddress, unsigned
short Port, char* UserName, char* Password):;

Delphi Syntax:

function FSDK SetHTTPProxy (ServerNameOrIPAddress: PAnsiChar;
Port: Word; Username: PAnsiChar; Password: PAnsiChar) :
integer;

C# Syntax:

int FSDK.SetHTTPProxy (string ServerNameOrIPAddress, UIntlo6
Port, string UserName, string Password) ;

VB Syntax:

Function FSDKVB SetHTTPProxy (ByVal ServerNameOrIPAddress As
String, ByVal Port As Long, ByVal Username As String, ByVal
Password As String) As Long

Java Syntax:

int FSDKCam.SetHTTPProxy (String ServerNameOrIPAddress, int
Port, String UserName, String Password);

Android Syntax:

int FSDK.SetHTTPProxy(String ServerNameOrIPAddress, shortPort,
String UserName, String Password);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 101

Parameters:

ServerNameOrIPAddress - proxy address.
Port — proxy port.

UserName - Proxy username.

Password — Proxy password.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.SetHTTPProxy (serverNameOrIPAddress: str, port: int,
userName: str, password: str);

Return Value:
None.

FSDK_GrabFrame Function

Retrieves the current frame from a web camera or an IP camera and stores the frame in the
created HImage handle. If a camera returns an image, mirrored horizontally (it depends on the
camera settings), then you can mirror it by using ESDK_Mirrorlmage.

C++ Syntax:

int FSDK GrabFrame (int CameraHandle, HImage* Image);

Delphi Syntax:

function FSDK GrabFrame (CameraHandle: integer; var Image:
PHImage): integer;

C# Syntax:

int FSDKCam.GrabFrame (int CameraHandle, ref int Image);

VB Syntax:

Function FSDKVB GrabFrame (ByVal CameraHandle As Long, ByRef
Image As Long) As Long

Java Syntax:

int FSDKCam.GrabFrame (HCamera CameraHandle, HImage Image);

Android Syntax:

int FSDK.GrabFrame (HCamera CameraHandle, HImage Image);

Parameters:

CameraHandle — handle of the opened camera to grab frame.
Image — pointer to HImage variable to store the frame. Note that the created Himage handle
should be deleted once it is no longer needed using the FESDK_Freelmage function.

Return Value:
Returns FSDKE_OK if successful.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 102

Python Syntax:

def FSDK.GrabFrame (camera: Camera) -> Image;

def Camera.GrabFrame () -> Image;

Return Value:
A new image with grabbed frame.

FSDK_CloseVideoCamera Function

This function closes the camera, opened by the FESDK_OpenVideoCamera or
FSDK_OpenlPVideoCamera function.

C++ Syntax:

int FSDK CloseVideoCamera (int CameraHandle);

Delphi Syntax:

function FSDK CloseVideoCamera (CameraHandle: integer):
integer;

C# Syntax:

int FSDKCam.CloseVideoCamera (int CameraHandle) ;

VB Syntax:

Function FSDKVB CloseVideoCamera (ByVal CameraHandle As Long)
As Long

Java Syntax:

int FSDKCam.CloseVideoCamera (HCamera CameraHandle) ;

Parameters:

CameraHandle — handle of opened video camera to close.
Return Value:

Returns FSDKE_OK if successful.

Python Syntax:

def FSDK.CloseVideoCamera (camera: Camera) ;

def Camera.Close();

Return Value:

None.

Note:

The camera is closed automatically by calling the destructor of Camera object.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 103

Tracker APIl: Face Recognition and Tracking in Video
Streams

What is Tracker API

Tracker API is a set of functions that allows for recognizing subjects in live video streams. The
API receives the video frame by frame, and assigns a unique identifier (ID) to each subject
detected in the video. Thus, each subject can be determined by its ID across the video. You can
attach a name tag to an identifier, and query any identifier for its name. The API also allows
simple face tracking (without registering subjects); tracking of the coordinates of either all
facial features or just eye centers; and recognition of subjects’ gender, age and facial expression.
The API provides an estimate of both recognition rate and false acceptance rate as the video
progresses.

If your task is to track or recognize faces in video streams, consider using Tracker API instead
of manually calling functions like FSDK_ DetectFace, FSDK_DetectFacialFeatures or
FSDK_GetFaceTemplate for each frame (“manual handling”). The difference between Tracker
API and manual handling is summarized in the table below.

Tracker API

A developer uses a few Tracker
APl functions to handle an
incoming video frame and set and
retrieve subjects’ names. The
APl automatically learns the
appearance of every detected
subject.

Manual handling

Development effort A developer must implement
different modes in the program:
a mode to enroll subjects and a
mode to recognize faces. In the
enrollment mode, the program
must store a certain (usually
found experimentally) number
of face templates in the database,
while the subject is posing in
front of the camera. In
recognition mode, a template for
each detected face is created and
is matched against the database.

environmental conditions
(such as lighting) change after

Performance The API constantly learns how | If

subjects appear. Thus, its

recognition rate is usually higher
than of a system that merely
stores several templates of a
subject.

the enrollment, the system may
not recognize the subject, and a
new enrollment will be required.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

104

Tracker API

Manual handling

Recognition rates

Tracker APl provides the
estimate of recognition rate and
false acceptance rate specifically
for video streams.

FSDK_MatchFaces provides
FAR/FRR values for matching a
pair of images. Typically, it is
not easy to estimate how the
storage of several templates per
person affects recognition rate,
how often false acceptances
occur as the video progresses,
and if false acceptance rate
increases as more subjects are
enrolled.

Enrollment

The subject is generally not
required to pose. When the
operator assigns a name to the
subject, it is likely that Tracker
API has already captured enough
views of a subject to recognize it
in later frames.

The subject is required to pose in
front of the camera, for the
system to capture the face in
different views and
environmental conditions, and
with different facial expressions.

Recognition without
enrollment

Every subject is recognized,
regardless of whether it was
already tagged with a name. The
API assigns a unique ID to track
the subject across the video.

This allows for surveillance
applications, when subjects
cannot be required to participate
willingly (that is, to pose) to be
enrolled for recognition.

Only enrolled subjects can be
recognized. The requirement to
participate actively in
recognition makes surveillance
applications difficult.

Tracking of multiple
faces

The API tracks, recognizes, and
allows assigning names to
multiple faces simultaneously
present in the video frame.

Usually only a single subject can
pose in front of the camera when
errolling. If other subjects are
visible, the system may
mistakenly store their templates
into the subject’s database
record. A separate tracking
mechanism is required to decide
whether the detected face
belongs to the enrolled subject or
not.

Facial feature
detection

Tracker API allows tracking of
facial feature coordinates of each
subject in the video frame. Jitter
is eliminated by smoothing.

The coordinates detected by
FSDK_DetectFacialFeatures
may jitter because of noise
present in the video. If multiple
faces are present, a tracking
mechanism is required to
implement smoothing.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

105

Tracker API

Manual handling

Gender and age
recognition

The API allows for identifying
gender and age for each subject
tracked in the video. The analysis
of the video usually provides
higher recognition rates than still
image gender and age
recognition.

When each video frame is
treated as a still image, gender
and age recognition rates are
usually lower.

Facial expression
recognition

The API allows for identifying if
a smile is present and if the eyes
are open or closed for each
subject tracked in the video. The

When each video frame is
treated as a still image,
expression recognition rates are
usually lower.

analysis of the video usually
provides higher recognition rates
than still image expression
recognition.

Understanding Identifiers

The API analyzes the video stream sequentially, frame by frame. For each frame, the function
FSDK_FeedFrame returns the list of identifiers (integer numbers) of faces recognized in this
frame. The purpose of an identifier is to assign a unique number to each subject in the video. If
a face is similar to one recognized previously, it receives the same identifier. Otherwise, a new
identifier (in ascending numeric order) is assigned. Thus, subjects recognized as different
should get different identifiers.

It is important to note that the identifier value is meaningful only within a particular video
stream. Identifiers of the same subject are not expected to be the same across different video
streams.

A subject can have several identifiers

The same subject can get different identifiers in different frames (for example, ID1 in the first
frame and ID2 in the second, ID2 > ID1), if the system was not able to match its face to ones
previously seen (which might happen if the appearance of the subject on the second frame was
notably or unexpectedly different).

Merger of identifiers

However, as the video progresses, the system learns more about the appearance of each person;
at some point it may deduce that ID1 and ID2 actually represent the same person. In such a case
(and if it is possible) it merges both identifiers into ID1, further returning 1D1 for every novel
recognized occurrence of this subject. The system retains the information of all merger events,
so it is possible to receive the resulting value of an early assigned identifier (for example,
receive the ID1 value when providing the ID2 value) by calling the ESDK_GetIDReassignment
function. Note that if an identifier was tagged with a name, it can be merged only with other
identifiers that are untagged; in such a case the tagged name is retained.

When calling Tracker API functions with identifiers received on earlier frames, it is always
recommended to convert the identifier values with the FSDK_GetIDReassignment function
first, and only then pass them to Tracker API. The reason is that they may have been merged

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 106

on the subsequent frames, so the corresponding subjects are being represented with other
identifier values.

When identifiers are not merged

The API supports tagging an identifier with a name, provided by the user. If identifiers are
tagged with different names, they will not be merged.

The appearances of each subject are stored in the memory (see the Memory section). If a subject
has been tagged with a name, and the memory for this subject is full, it will not be merged with
any other identifier (because such a merger requires additional memory for the subject).

Similar identifiers

The identifier returned by the FSDK_FeedFrame function can be similar enough to other
identifiers for the API to decide they represent the same person. Still, some reason (such as the
one described above) may prevent them from merging. In such case, similar identifiers of an
ID can be retrieved using the FSDK_GetSimilarIDList function.

You should always retrieve the list of similar identifiers when deciding if therecognized face
belongs to a certain subject or not. Let us assume that you have a particular subject of interest
and should respond when it is recognized. You may have stored an identifier of that subject, or
assigned a name to it with ESDK_SetName, and wait for such identifier (or name) to appear.
(Keep in mind that you need to adjust the stored identifier with FSDK_GetIDReassignment
after calling FSDK_FeedFrame.) When the subject appears, however, there is no guarantee that
the stored identifier will be returned by the FSDK_FeedFrame function. Instead, it may appear
in the list of similar identifiers. Therefore, you should compare your identifier against the list
of similar identifiers for each ID returned by FSDK_FeedFrame. Accordingly, you need to
retrieve the names of each similar identifier, for each ID returned by FSDK_FeedFrame, to find
if any of these names belong to the subject of interest. If you are not considering such lists of
similar identifiers, your recognition rate will be lower (that is, you may miss the appearance of
the subject of interest). Of course, your false acceptance rate will be lower as well. But the drop
in recognition rate will be higher compared to when you set a higher recognition threshold (see
the Recognition Performance section), and handle similar identifiers.

The function ESDK_GetAllINames implements the above functionality — it returns the name of
an identifier, concatenated with the names (if any) of similar identifiers, separated by a
semicolon.

Tracker Memory

The API allows limiting the memory used by a tracker. The memory size is measured in the
total number of facial appearances stored (about 11 Kbytes per appearance when the
KeepFacelmages parameter is set to true, and about 1.5 Kbytes when set to false). By default,
the limit is 2150 appearances (about 24 Mbytes or 3 Mbytes depending on the value of the
KeepFacelmages parameter). You can change the limit by setting the MemoryLimit parameter
(see the Tracker Parameters section) to your desired value.

Memory available for each subject
For each subject tagged with a name, the amount of memory available is
max(1, memoryLimit/(subjectCount+1))

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 107

where subjectCount is the total number of subjects tagged with a name. The remaining memory
is dedicated to untagged identifiers.

If, when setting a name with FSDK_SetName, there is not enough room for a new subject, the
API will return the FSDKE_INSUFFICIENT _TRACKER_MEMORY _LIMIT error.

Imposing memory limits

If amemory limit for an identifier, tagged with a name, is approached, then no new appearances
of that subject will be stored. That is, the system stops learning novel appearances of the subject.
Furthermore, the identifier will not be merged with any other identifiers.

If a memory limit is approached for untagged identifiers, the earliest untagged facial appearance
becomes purged when calling FSDK_FeedFrame. Note that only a particular appearance of
some untagged identifier becomes purged, not the identifier’s entire record of appearances;
identifiers that have only one occurrence are purged completely. To prevent purging, you may
use the FSDK_LockID function.

Note that if an identifier is tagged, and does not occupy more memory than available per subject,
its facial appearances are not purged.

How to set the memory limit

The higher the limit, the more identifiers you can tag, and the more facial appearances can be
stored for each identifier (thus improving the recognition rate). However, the Threshold
parameter should also be higher (but setting too high a Threshold has its downsides — see the
Recognition Performance section), for the false acceptance rate to stay at an acceptable level.

When increasing MemoryLimit, the frame rate may decrease. Therefore, it is practical to choose
a memory limit that will allow for a sufficient frame rate, will not require too high a threshold,
and will consume only a certain amount of memory, while at the same time allowing for the
storage of the desired number of subjects.

See the Recognition performance section to find which Threshold values should be chosen with
different memory limits to achieve the desired recognition rates.

Tracker Parameters

Each HTracker instance allows setting a number of parameters with the
FSDK_SetTrackerParameter or FSDK_SetTrackerMultipleParameters function.

Face tracking parameters

Note that the Tracker APl does not use the parameters of face detection, set with
FSDK_SetFaceDetectionParameters or FESDK_SetFaceDetectionThresholds. Instead, you
should use the Tracker APl parameters below.

FaceDetectionModel, TrimOutOfScreenFaces,
TrimFacesWithUncertainFacialFeatures - the parameters analogous to ones
described in the FaceSDK Parameters section. Their default values are (default, true, true).

HandleArbitraryRotations, DetermineFaceRotationAngle,
InternalResizeWidth —the parameters analogous to ones in
FSDK_SetFaceDetectionParameters. Their default values are (false, false, 256).

FaceDetectionThreshold —a parameter analogous to one in
FSDK_SetFaceDetectionThreshold. The default value is 5.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 108

FaceTrackingDistance — specifies the maximum distance between faces of one person
on consecutive frames, to consider an uninterrupted tracking sequence. The parameter is
measured in width of the detected face. The default value is 0.5. You may decrease it when the
frame rate is high to lower the probability of false acceptances, or increase it when the frame
rate is low and the recognition rate is low due to interrupted tracking.

Face recognition parameters

RecognizeFaces — whether to recognize subject’s identity. If set to true, the system
attempts to assign each subject a unique id, while giving equal identifiers to the same subject
across the video. If set to false, the system will return a unique 1D value for every uninterrupted
sequence of a detected face (that is, when a certain face is detected on every frame of the
sequence), regardless of the identity of this face. The default value is true.

DetectGender — Wwhether to recognize the gender of a subject. Gender recognition requires
the detection of facial features, so when set to true, facial features are detected regardless of the
DetectFacialFeatures parameter. The default value is false.

DetectAge —Whether to recognize the age of a subject. Age recognition requires the detection
of facial features, so when set to true, facial features are detected regardless of the
DetectFacialFeatures parameter. The default value is false.

DetectExpression — Whether to recognize facial expression of a subject. Expression
recognition requires the detection of facial features, so when set to true, facial features are
detected regardless of the DetectFacialFeatures parameter. The default value is false.

DetectLiveness —Whether to perform passive liveness detection. See the Passive Liveness
section for more details. The default value is false.

Learning — whether to learn subjects’ appearances. If set to true, the API will learn the
appearance of each subject, unless its memory is full, and add new subjects to the memory. If
set to false, the system will return only the identifiers already present in the memory; no addition
of novel subjects, novel facial appearances, or merger of identifiers will occur. If a subject does
not match any appearance stored in the memory, ESDK_FeedFrame will return the -1 identifier
for that subject. Set this flag to false if you have a reason not to alter the memory. The default
value is true.

MemoryLimit — the amount of memory available for the storage of facial appearances. See
the Tracker Memory section below. The default value is 2150.

Threshold - the threshold used when deciding if two facial appearances belong to the same
subject. Each threshold value alters both the false acceptance rate and recognition rate. See the
Recognition Performance below. The default value is 0.992.

KeepFaceImages — Whether to store the original facial images in the Tracker memory. See
the Storing original facial images, section for details. The default value is true.

Facial feature tracking parameters

DetectEyes — Whether to detect eyes. Eyes will be detected regardless of the value of this
parameter when RecognizeFaces is set to 1. When eyes are detected, their coordinates can be
retrieved with FSDK_GetTrackerEyes. The default value is false.

DetectFacialFeatures — Whether to detect facial features. Facial features are detected
when RecognizeFaces is set to 1, regardless of the value of this parameter. They are also
detected if DetectGender, DetectAge or DetectExpression are set to 1. The default value is false.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 109

DetectAngles —Wheter to estimate out-of-plane face rotation angles by using the detected
facial features. Pan and Tilt are returned as the Angles facial attribute. The default value is false.

FacialFeatureJitterSuppression —Wwhether to suppress the jitter of facial features
by employing more processor resources. If 0, such jitter suppression is not employed. Set to a
higher value for better suppression. A non-zero setting takes effect only when
DetectFacialFeatures=true, even if facial features are actually detected due to the setting of the
RecognitionProcision, DetectGender, DetectAge or DetectExpression parameters.

The default value depends on NUM_THREADS, the number of threads supported by the CPU,
which can be obtained using the FSDK_GetNumThreads function. The default value is
NUM_THREADS - 1 when NUM_THREADS <= 4; 3 when NUM_THREADS <= 8§;
NUM_THREADS/2 - 1 when NUM_THREADS <= 40; and 19 otherwise. Note that the way
the default value is selected may change the behavior of Tracker API from system to system.
That is, systems supporting more threads will display smoother facial feature coordinates by
default. This may also change the behavior of face recognition and attribute detection (although
it will not change their average accuracy). If you need Tracker API to return the same output
for the same input data regardless of the number of threads, set this parameter to a fixed value
in your application.

SmoothFacialFeatures — Whether to smooth facial features from frame to frame to
prevent jitter. If set to false, the coordinates of facial features are detected independently of the
previous frame, and may jitter because of the noise present in the video. If the parameter is set
to true, the API will smooth the coordinates of facial features. The default value is true.

FacialFeatureSmoothingSpatial - a coefficient employed in facial feature
smoothing. Controls spatial smoothing of facial features. The default value is 0.5.

FacialFeatureSmoothingTemporal — a coefficient employed in facial feature
smoothing. Affects temporal smoothing of facial features (that is, how the smoothed
coordinates relate to their coordinates on the previous frame). The default value is 250.

Tuning for Optimal Performance

The higher frame rates of FSDK_FeedFrame (i.e., fast processing of frames) usually positively
affect the recognition rate for live video, because more facial appearances of a person can be
captured per unit of time.

Experiment with face detection parameters, especially withinternalResizeWidth: higher values
allow for faces to be detected at greater distance, but require additional time (and lower the
frame rate). If you find a high number of false detections (i.e. when faces are detected where
they are not present), try increasing the FaceDetectionThreshold parameter.

Setting DetectGender, DetectAge or DetectExpression to true will lower the frame rate. If you
need only to detect gender, age or facial expressions, you may consider setting the
RecognizeFaces parameter to false, in order to increase the frame rate.

Using the API

The API allows for creating several trackers within the program, each having a separate
memory for the recognized subjects and their names.

The tracker is represented with the HTracker data type.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 110

C++ Declaration:
typedef unsigned int HTracker;

Pyrthon Declaration:

class FSDK.Tracker;

Locking identifiers

There are cases when you need to work with (or tag) an identifier across several frames. For
example, you may have the user interface running in a different thread than FSDK_FeedFrame.
Then, there is a chance that when a user selects an untagged identifier and starts to enter a name
for it, the identifier may become purged by FSDK_FeedFrame running in parallel (see the
Tracker Memory section). To prevent this, you need to use the FSDK_LockID functions as
soon as the user selected an identifier. The function will prevent the untagged identifier from
being purged completely.

Multiple camera support

Tracker API is designed to support multiple cameras, though in the current release only a single
camera is supported. You should pass 0 as the Cameraldx parameter to every function that
accepts it. You should not alternate frames from multiple cameras while sending them to
FSDK_FeedFrame, since it will disrupt the tracking process, and yield a lower recognition rate
and a higher false acceptance rate. It is also not recommended to switch from one camera to
another while sending the frames using FSDK_FeedFrame. It is acceptable, however, to switch
cameras before the memory of the tracker is loaded with FSDK _LoadTrackerMemoryFromFile
or FSDK_LoadTrackerMemoryFromBuffer.

Storing original facial images

As the internal format of facial appearances may change in future versions of FaceSDK, Tracker
API has the KeepFacelmages parameter, which controls whether the original facial images are
stored in the Tracker memory. If the format changes, you will be able to convert your Tracker
memory to the new format automatically (if you’ve stored the original facial images). In such
a case, you won’t need to reenroll your subjects. It is recommended that you keep this parameter
set to true, its default setting.

When the KeepFacelmages parameter is set to true, Tracker API stores an original facial image
along with every facial appearance in the Tracker memory. The size of a facial appearance is
about 1.5 Kbytes when KeepFacelmages is set to false, and about 11 Kbytes when
KeepFacelmages is set to true. Note that if you’ve had this parameter set to false and
accumulated some facial appearances, their original facial images will be lost, even if you set
KeepFacelmages to true after that.

If you don’t want the original facial images to be stored in the Tracker memory, set this
parameter to false.

Usage Scenario

The following scenario is employed when using Tracker API.

1. Create a tracker (FSDK CreateTracker) or load it from a file
(FSDK_LoadTrackerMemoryFromFile) or from a memory buffer
(FSDK LoadTrackerMemoryFromBuffer).

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 111

2. Set tracker parameters (FSDK_SetTrackerParameter,
FSDK_SetTrackerMultipleParameters), such as face detection parameters, recognition
precision, or the option to recognize gender/age/facial expression or to detect facial
features.

3. Open avideo camera (FSDK_OpenVideoCamera, FSDK_QOpenlIPVideoCamera), or
prepare to receive video frames from another source.

4. Inaloop:
1) Receive a frame from a camera (FSDK_GrabFrame) or another source.
2) Send the image to the FSDK_FeedFrame function.

3) Display the image on a screen.
4) For each ID returned by FSDK_FeedFrame:

I. Retrieve its facial coordinates (FSDK_GetTrackerFacePosition), eye
center coordinates (FSDK_GetTrackerEyes), facial feature coordinates
(FSDK_GetTrackerFacialFeatures), gender, age or facial expression
(FSDK_GetTrackerFacialAttribute).

ii. Retrieve the list of possible names (FSDK_GetAlINames).

iii. If, relying on coordinates, you found that that user has clicked on a
face, call ESDK_LockID on that identifier, display an input box and
ask the user for a name of the subject. You may continue to run
FSDK_FeedFrame in parallel.

iv. If the user entered a name, set it using the FSDK_SetName function. If
the user chose to erase the subject, call ESDK_SetName with an empty
name. In any case, call ESDK_UnlockID to unlock the identifier.

v. If manually handling identifiers (for example, storing the identifier of
each subject to look up them later, or storing images of each subject),
call FSDK_GetSimilariDCount and FSDK_GetSimilarIDList to
retrieve identifiers, similar to 1D, and store (or compare against) them
as well. In addition, call ESDK_GetIDReassignment for every
previously stored identifier before comparing against them.

5) If necessary, save tracker memory to a file or a buffer
(FSDK_SaveTrackerMemoryToFile, FSDK_SaveTrackerMemoryToBuffer).

5. Free the tracker handle using FSDK_FreeTracker.

6. Close the video camera (FSDK CloseVideoCamera).

User Interaction with the System

In atypical scenario, a user observes the images from a camera, with faces outlined in rectangles
and names displayed under the rectangles. There is an option to tag a subject with a name by
clicking its face and entering the name, or to remove the subject from the memory. The software
may notify the user when some previously defined subjects appear. The software may
additionally store each image of a subject, and allow browsing such subject’s images. The
software may store images of untagged subjects as well (and store their ID along with the
image), but keep in mind that if the memory limit is reached, earlier appearances of untagged

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 112

subjects will be purged, and should these subjects appear again, they may be given with new
ID numbers (unrelated to their old identifiers; see the Tracker Memory section).

The user normally should have control over the MemoryLimit and Theshold parameters to alter
the recognition quality and the number of subjects that can be stored in the system.

Enrollment

To enroll a subject, the user is usually only required to click a subject’s face and enter the name.
If the subject has been already present in front of the camera for a certain time (for example,
while approaching the user’s desk), it is likely that the API has stored enough facial appearances
of the subject to recognize it again. If this is not the case, the subject may be asked to tilt or
rotate its head, to walk closer to or further away from the camera, and the lighting can be altered.
If the frame rate is especially low, or if environmental conditions change unexpectedly, the API
may not recognize the subject in some appearances. In such cases, the user may tag a subject
with the same name on several occasions, until enough facial appearances are stored, and the
subject is consistently recognized.

If you need to ensure that you track a live subject, consider detecting whether the facial
expression changes with the FSDK_GetTrackerFacialAttribute function.

Dealing with false acceptances

The API is designed to return several names with FESDK_GetAlINames for a certain ID. In most
cases, the system will return only a single name. If the system returns several names, it means
that a false acceptance has occurred. That is, two (or more) subjects became confused.

Although the false acceptance rate is usually low, there is no way to eliminate it completely;
instead, the user balances the false acceptance rate against the recognition rate. The software
should account for the scenario when a false acceptance has been occurred.

In an access control setting, you may decide to grant access to the subject if any of the names
recognized has the appropriate permissions. Alternatively, the software may signal about a false
acceptance, and the user may decide to set the Threshold parameter to a higher value — to lower
the probability of next false acceptance. In that case it is necessary, first, to erase the persons
that were confused (by calling FSDK_SetName with an empty name to remove the name, and
FSDK_PurgelD to remove all facial appearances of this ID), and then, when the threshold is
set to a higher value, to set their names again.

Keep in mind that not every false acceptance will return several names of a person. It is possible
that just a single incorrect name is returned, and the false acceptance may go unnoticed.
However, with the appropriate setting of the Threshold parameter, such scenarios are rare.

Note that when there are one or more similar identifiers returned with ESDK_GetSimilarIDL.ist,
and these identifiers do not have name tags, this does not always mean a false acceptance. As
described in the Understanding Identifiers section, when the memory for an identifier is full, it
will not become merged with other identifiers (even if they represent the same subject), so these
identifiers will be returned in the list of similar identifiers.

Saving and Loading Tracker Memory

To save the memory of a tracker to file, use the FSDK_SaveTrackerMemoryToFile function.
Alternatively, you may save it to a memory buffer (for example, to for later importing into a
database). You need to call FSDK_GetTrackerMemoryBufferSize to determine the size of the
buffer, and then call FESDK_SaveTrackerMemoryToBuffer.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 113

Conversely, to load the memory of a tracker from a file or a buffer, use the
FSDK _LoadTrackerMemoryFromFile or FSDK_LoadTrackerMemoryFromBuffer functions.
Note that you need to set the tracker parameters again after loading, because a new tracker
handle has been created, with parameters set to default values.

Note that this operation saves only the memory contents of a tracker: stored facial appearances,
identifiers, and names. The parameters of a tracker are not saved. Moreover, the internal state
of face tracking is not saved as well. It means that if, during the main loop (where you call
FSDK_FeedFrame), you save the tracker to a file, and then immediately reload it, such an
operation will disrupt face tracking. Because of this, the later recognition results you receive
will be different (compared to when such an operation was not done), and the parameters will
be reset to defaults. Also, you will not be able to receive face position, eye coordinates, facial
feature coordinates, or get the list of similar identifiers immediately after loading. However,
after the next FSDK_FeedFrame call, face tracking resumes, and the aforementioned functions
operate normally.

Recognition Performance

The performance of face recognition (i.e. how often a subject is recognized, and how often
different subjects are confused) is controlled with the Threshold and MemoryLimit parameters.
The higher the Threshold parameter (and the lower the MemoryLimit parameter), the less often
a subject will be recognized, and the less often confusions will occur.

Performance measures

Tracker API employs two performance measures: false acceptance rate (FAR) and recognition
rate (R). FAR measures the rate of confusing different subjects (that is, assigning different
subjects with equal identifier values) during a certain number of storage events, once the
memory becomes full. R measures the rate of recognizing a person after tagging, once all
available memory is full.

Understanding storage events

When calculating FAR, one could just count how often false acceptances occur during a certain
time interval (for example, an hour). However, such a measure will vary greatly across different
kinds of video footage.

For example, in an office setting, when subjects are sitting at their desks, and change their
positions or facial expressions rather slowly, almost every frame will be very similar to the
previous one. Therefore, the API will store novel facial appearances at a slow pace. If there
were no false acceptances on a previous frame, they are very unlikely to occur on the next;
therefore we expect false acceptances to occur rather rarely.

On the other hand, in an active setting (when many novel subjects appear in front of the camera,
move around, and disappear from view), we expect the system to store novel facial appearances
quite often, because many subjects appears at previously unseen views. Therefore, we expect
false acceptances to occur more often, because of the faster pace of the video.

To employ a rate that is meaningful in both settings, we instead measure time not in seconds,
but in storage events. For example, in the office setting, at 12 frames per second, we may get
only 400 storage events during an hour, and in the active setting we may get 3600 storage events
during an hour. We measure FAR at an interval of 2000 storage events, which could be roughly
equal to 5 hours of a hypothetical less active setting, or 32 minutes of an active setting. It is

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 114

important to note that as facial appearances of a subject accumulate, the rate of storage events
will slow down, since there will be fewer novel facial appearances.

How to measure your rate of storage events

To measure the rate of storage events in your setting, call FSDK_GetTrackerParameter with
the MemorySize parameter during the main loop. Each time a storage event occurs, the
MemorySize parameter increases. As your video progresses, you may calculate how much time
will be needed to reach 2000 storage events. Note that when the memory is full, storage events
themselves still occur, but nothing is stored; this does not mean that FAR becomes zero. You
should estimate the rate of storage events before the memory is full.

Understanding FAR

FAR is the rate of assigning different subjects with equal identifier values. The rate tells how
often a certain subject (say, John) will be falsely accepted as any other subject. For example, if
FAR is 0.001, John might expect a 0.001 probability of being falsely accepted as some other
subject. However, if we have 10 subjects in the system, such a rate applies to every one of them.
Therefore, it is practical to know the rate of falsely accepting at least two subjects among any
of them. Such a rate can be calculated as

1-(1-FAR)V(N-D2

where N is the number of subjects. For example, at FAR=0.001, N=10, we have a 4.4% rate
that at least one false acceptance will occur during the 2000 storage events considered. To have
a 1% rate with 10 subjects, FAR should not exceed 0.0003.

Understanding R

R is the rate of recognizing a subject after it was tagged a single time, and all memory available
for a subject becomes full. A subject is successfully recognized, if its name is present among
the names returned by FSDK_GetAllINames. R is measured from 0 to 1, which translates to
recognition in 0% and 100%, respectively, of frames received by FSDK_FeedFrame.

R depends mainly on the amount of memory available for each subject. For example, if there
are 30 subjects in your system, and you allow 20 units of memory for each subject, your memory
limit should be (30+1)*20=620.

Choosing Threshold value

To choose the Threshold value, refer to the tables below. You should consider the maximum
number of subjects to be tagged within your system, and the maximum memory per subject.

Generally, the higher the MemoryLimit is set, the higher the FAR will be (once all available
memory has been used).

Note that higher Threshold values together with a higher memory amount allow higher
recognition rate only when enough facial appearances of an identifier have been accumulated.
If there are sudden changes in facial appearance (due to low frame rate or environmental factors,
for example), it may require more time to capture enough facial appearances with a higher
Threshold value.

The tables below show the expected false acceptance rate and recognition rate.
False Acceptance Rate at Threshold and MemoryLimit

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 115

MemoryLimit
Threshold
350 700 1750 3500 5250 7500

0.992000 | 0.000081 | 0.000130 0.000231 0.000266 | 0.000277 | 0.000277
0.993141 | 0.000066 | 0.000107 0.000183 0.000209 | 0.000216 | 0.000216
0.994283 | 0.000062 | 0.000089 0.000144 0.000166 | 0.000170 |0.000170
0.995424 | 0.000052 | 0.000068 0.000101 0.000114 | 0.000118 |0.000118
0.996566 | 0.000042 | 0.000050 0.000072 0.000077 | 0.000081 | 0.000081
0.997707 | 0.000036 | 0.000040 0.000054 0.000055 | 0.000056 | 0.000056
0.998849 | 0.000030 | 0.000034 0.000045 0.000039 | 0.000039 | 0.000039
0.999990 | 0.000002 | 0.000007 0.000009 0.000012 | 0.000014 | 0.000023

Recognition Rate at Threshold and Memory per subject

Memory per subject
Threshold
5 10 15 21

0.992000 | 0.995 0.999 0.999 0.999
0.993141 | 0.994 0.999 0.999 0.999
0.994283 | 0.993 0.998 0.999 0.999
0.995424 | 0.991 0.998 0.998 0.998
0.996566 | 0.986 0.997 0.997 0.997
0.997707 | 0.978 0.995 0.996 0.996
0.998849 | 0.956 0.986 0.988 0.988
0.999990 | 0.073 0.087 0.107 0.138

For example, let us assume that you have 30 subjects in an office setting, your frame rate is 12
per second, and you decide to allow 21 units of memory per subject. Therefore, your memory
limit is (30+1)*21 = 651 (see the formula in the Memory available for each subject section).
You decide to have a FAR of 0.000050 and calculate that with 30 subjects, there will be 2.2%
rate that a subject will be given with an ID of any other subject (see the formula in the
Understanding FAR section) during 2000 storage events (approximately 5 hours in an office
setting). To have a FAR of 0.000050 with MemoryLimit=700 (the value closest to 651 in the
table), you choose Threshold=0.996566. You note that at such a threshold and 21 units of
memory per subject, you have a 0.997 recognition rate (meaning subjects will be recognized in
99.7% of frames in the video).

Note: it is not recommended to use Threshold higher than 0.999, since it will make Tracker API
recognize faces less often.

Gender, Age and Facial Expression Recognition

The API allows for identifying gender and age of a face and its expressions by using the
FSDK_GetTrackerFacialAttribute function.

To detect gender, you need to set the DetectGender tracking parameter to true. The function
returns confidence levels for each gender (male and female) in the output string. You can parse
this string using the FSDK_GetValueConfidence function.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 116

To detect age, you need to set the DetectAge tracking parameter to true. The function then
returns the age of the face in the output string.

To detect expression, you need to set the DetectExpression tracking parameter to true. The
function returns confidence levels for each expression (if a smile is present and if the eyes are
open or closed) in the output string. You can parse this string using the
FSDK_GetValueConfidence function.

The confidence level for each attributereturned by the FSDK_GetTrackerFacialAttribute
function, varies from 0 to 1 (except the “Age” attribute—for which the age itself—not a
confidence level, is returned). When recognizing gender, you may assume that the recognized
gender will be the one with the higher confidence level.

If your system should respond to the particular gender of a novel subject (for example, when
advertising separate products for male and female visitors), consider waiting for about a second
after the subject has first appear, for the gender to be recognized with higher accuracy. You
may also consider responding when the confidence level is not just merely than 0.5, but exceeds
a certain threshold (for example, 0.7 or 0.9, which translate to 70% or 90% accuracy).

If your system should respond to the particular expression of a subject (for example, taking a
picture only when a person smiles and the eyes are open), consider waiting for about 0.5 seconds
after the subject has appeared. To find out if the expression is present, it is usually optimal to
compare the confidence in the attribute value with the 0.5 threshold (i.e., if the confidence in
the “Smile” value is greater than 0.5, the person smiles, and if the confidence in the “EyesOpen”
value is greater than 0.5, the eyes are open). You may use a higher threshold for greater
certainty, but in this case some expressions may not be detected.

Note that gender, age and expression recognition requires the detection of facial features, so
facial features will be detected regardless of the DetectFacialFeatures parameter value. This
will decrease the frame rate. You might consider setting the RecognizeFaces parameter to false
if you only need to detect gender, age or expressions and do not need recognition of the subjects’
identities, which will increase the frame rate.

Face, Eye and Facial Feature Tracking

Tracker API supports the tracking of face, eye centers, and facial features in addition to the
recognition of a subject’s identity. You need to use the FSDK_GetTrackerFacePosition,
FSDK_GetTrackerEyes and FSDK_GetTrackerFacialFeatures to retrieve the corresponding
coordinates. You also need to set the parameter DetectEyes or DetectFacialFeatures to true
when tracking eyes or facial features, respectively. Tracker API perform smoothing of facial
features (see the SmoothFacialFeatures parameter).

When you only need to track faces, and do not need to recognize subjects’ identities, you can
disable face recognition to improve performance. To accomplish that, you need to set the
RecognizeFaces parameter to false.

Counting the number of people

You should not estimate the amount of people the system observed based on the values of the
identifiers, since some of they may have been merged with others. Instead, you may retain all
the ID values returned by Tracker API, and at the point when the number of people should be
estimated, you should replace each ID with the value returned by the
FSDK_GetlDReassignment function. Then, you can count the amount of different identifiers
in the list. Note that if memory limit is approached, some untagged identifiers may be purged,

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 117

and the amount of people may be overestimated. See the User Interaction with the System
section for details.

If each subject captured by the camera appears only once, you may consider not determining
the subject’s identity (set RecognizeFaces to false). Then, the value of the ID returned by the
API will be equal to the total number of continuous facial sequences, or approximately the
number of people appeared in front of the camera.

Thread Safety

All tracker functions are thread safe. Note that you should avoid calling FSDK_FeedFrame
simultaneously on the same tracker and camera (the Cameraldx parameter) from several
threads, since it will disrupt the FSDK_GetTrackerEyes, FSDK_GetTrackerFacialFeatures,
FSDK_GetTrackerFacePosition, FSDK_GetTrackerFacial Attribute,
FSDK_GetSimilariDCount, FSDK_GetSimilarIDList and FSDK_GetAlINames functions. The
reason is that the ID received from FESDK_FeedFrame must be passed to these functions before
the next FSDK_FeedFrame is executed with the following frame; otherwise these functions
may not perform correctly.

FSDK_CreateTracker Function

Creates a new tracker handle to be passed to other Tracker API functions.
C++ Syntax:

‘int FSDK CreateTracker (HTracker * Tracker);

Delphi Syntax:

‘function FSDK CreateTracker (Tracker: PHTracker): integer;

C# Syntax:

‘int FSDK.CreateTracker (ref int Tracker);

VB Syntax:

‘Function FSDKVB CreateTracker (ByRef Tracker As Long) As Long

Java and Android Syntax:

‘int FSDK.CreateTracker (HTracker Tracker);

Parameters:

Tracker — pointer to the integer variable that will to store the created tracker handle.
Return Value:

Returns FSDKE_OK if successful.

Python Syntax:

def FSDK.CreateTracker () —-> Tracker;

constructor
Tracker () -> Tracker

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 118

Return Value:
New Tracker object.

FSDK_FreeTracker Function

Frees a tracker handle. The handle becomes invalid, and all memory associated with it is
released. You should not pass the tracker handle to any other Tracker API functions after the
handle was freed.

C++ Syntax:

‘int FSDK FreeTracker (HTracker Tracker); ‘

Delphi Syntax:

‘function FSDK FreeTracker (Tracker: HTracker): integer; ‘

C# Syntax:

‘int FSDK.FreeTracker (int Tracker); ‘

VB Syntax:
‘Function FSDKVB FreeTracker (ByVal Tracker As Long) As Long ‘

Java and Android Syntax:

‘int FSDK.FreeTracker (HTracker Tracker); ‘

Parameters:

Tracker — handle of the tracker to be freed.
Return Value:

Returns FSDKE_OK if successful.

Python Syntax:

def FSDK.FreeTracker (tracker: Tracker);

def Tracker.Free();

Note:
Tracker object is freed automatically by destructor.

FSDK_ClearTracker Function

Clears the content of a tracker, releasing all its memory. The tracker handle stays valid. The
parameters are reset to their default values, so if you just need to clear the tracker’s memory,
consider setting the parameters with the FSDK_SetTrackerParameter or the
FSDK_SetTrackerMultipleParameters function again.

C++ Syntax:

‘int FSDK ClearTracker (HTracker Tracker); ‘

Delphi Syntax:

‘function FSDK ClearTracker (Tracker: HTracker): integer; ‘

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 119

C# Syntax:

‘int FSDK.ClearTracker (int Tracker):;

VB Syntax:

‘Function FSDKVB ClearTracker (ByVal Tracker As Long) As Long

Java and Android Syntax:

‘int FSDK.ClearTracker (HTracker Tracker);

Parameters:

Tracker — handle of the tracker to be cleared.
Return Value:

Returns FSDKE_OK if successful.

Python Syntax:

def FSDK.ClearTracker (tracker: Tracker);

def Tracker.Clear();

Return Value:
None.

FSDK_SetTrackerParameter Function

Sets the parameter of a tracker. See the Tracker Parameters section for details.

C++ Syntax:

int FSDK SetTrackerParameter (HTracker Tracker, const char *
ParameterName, const char * ParameterValue);

Delphi Syntax:

function FSDK_SetTrackerParameter (Tracker: HTracker;
ParameterName, ParameterValue: PAnsiChar): integer;

C# Syntax:

int FSDK.SetTrackerParameter (int Tracker, string
ParameterName, string ParameterValue);

VB Syntax:

Function FSDKVB SetTrackerParameter (ByVal Tracker As Long,
ByVal ParameterName As String, ByVal ParameterValue As String)
As Long

Java and Android Syntax:

int FSDK.SetTrackerParameter (HTracker Tracker, String
ParameterName, String ParameterValue);

Parameters:

Tracker — handle of the tracker to have parameters set parameters.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 120

ParameterName —name of the parameter to be set.
ParameterValue — value of the parameter.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.SetTrackerParameter (tracker: Tracker, paramName: str,
paramValue) ;

def Tracker.SetParameter (paramName: str, paramValue);

Return Value:

None.

Note:

The type of parameterValue can be of types: str, int, float ot bool.

FSDK_SetTrackerMultipleParameters Function

Sets multiple parameters of a tracker.The parameters and their values are specified in the
following format:

"Parameterl=Valuel [; Parameter2=Value2[;..]]1"

See the Tracker Parameters section for details.

C++ Syntax:

int FSDK SetTrackerMultipleParameters (HTracker Tracker, const
char * Parameters, int * ErrorPosition);

Delphi Syntax:

function FSDK SetTrackerMultipleParameters (Tracker: HTracker;
Parameters: PAnsiChar; ErrorPosition: PInteger): integer;

C# Syntax:

int FSDK.SetTrackerMultipleParameters (int Tracker, string
Parameters, ref int ErrorPosition);

VB Syntax:

Function FSDKVB SetTrackerMultipleParameters (ByVal Tracker As
Long, ByVal Parameters As String, ByRef ErrorPosition As Long)
As Long

Java and Android Syntax:

int FSDK.SetTrackerMultipleParameters (HTracker Tracker, String
Parameters, IntByReference ErrorPosition);

Parameters:

Tracker — handle of the tracker to have parameters set.
Parameters — string containing the parameters and corresponding values to be set.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 121

ErrorPosition — pointer to the integer variable that will receive the position of the
character that caused syntax error in the string.

Return Value:

Returns FSDKE_OK if successful. In case of syntax error returns FSDKE_SYNTAX_ERROR
and sets the value of the ErrorPosition variable.

Example:

int err = 0;

FSDK SetTrackerMultipleParameters (tracker,
"HandleArbitraryRotations=false;
DetermineFaceRotationAngle=false; InternalResizeWidth=100;
FaceDetectionThreshold=5;", &err);

Python Syntax:

def FSDK.SetTrackerMultipleParameters (tracker: Tracker,
parameters: str);

def Tracker.SetParameters (**kw) ;

Return Value:

None.

Note:

Keyword argumets are interpreted as parameter names with their values to be set.

FSDK_GetTrackerParameter Function

Retrieves the value of a tracker parameter. See the Tracker Parameters section for details.

C++ Syntax:

int FSDK GetTrackerParameter (HTracker Tracker, const char *
ParameterName, char * ParameterValue, long long
MaxSizeInBytes) ;

Delphi Syntax:

function FSDK GetTrackerParameter (Tracker: HTracker;
ParameterName, ParameterValue: PAnsiChar; MaxSizeInBytes:
int64): integer;

C# Syntax:

int FSDK.GetTrackerParameter (int Tracker, string
ParameterName, out string ParameterValue, long MaxSizeInBytes)

VB Syntax:

Function FSDKVB GetTrackerParameter (ByVal Tracker As Long,
ByVal ParameterName As String, ByRef ParameterValue As String,
ByVal MaxSizeInBytes As Currency) As Long

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 122

Java and Android Syntax:

int FSDK.GetTrackerParameter (HTracker Tracker, String
ParameterName, String ParameterValuel[], long MaxSizeInBytes);

Parameters:

Tracker — handle of the tracker whose parameter value is desired.
ParameterName —name of the parameter to be retrieved.
ParameterValue — pointer to the output null-terminated string that will store the value of

the parameter.
MaxSizeInBytes —amount of memory allocated for the output string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_INSUFFICIENT _BUFFER_SIZE if there
IS not enough room to store the output string; however, the output string still fills up all the
space available.

Python Syntax:

def FSDK.GetTrackerParameter (tracker: Tracker, parameterName:
str) -> str;

def Tracker.GetParameters (parameterName: str) -> str;

Return Value:
The value of parameter as string.

FSDK_FeedFrame Function

Processes a video frame according to tracker’s parameters, and returns the identifiers of the
tracked faces. See the Understanding Identifiers, Tracker Memory and Tracker Parameters
sections for details.

C++ Syntax:

int FSDK FeedFrame (HTracker Tracker, long long Cameraldx,
HImage Image, long long * FaceCount, long long * IDs, long
long MaxSizeInBytes);

Delphi Syntax:

function FSDK FeedFrame (Tracker: HTracker; Cameraldx: int64;
Image: HImage; FaceCount: PInté4; IDs: PIDArray;
MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.FeedFrame (int Tracker, long CameralIdx, int Image, ref
long FaceCount, out long[] IDs, long MaxSizelInBytes)

VB Syntax:

Function FSDKVB FeedFrame (ByVal Tracker As Long, ByVal
Cameraldx As Currency, ByVal Image As Long, ByRef FaceCount As
Currency, ByRef IDs As Currency, ByVal MaxSizeInBytes As
Currency) As Long

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 123

Java and Android Syntax:

int FSDK.FeedFrame (HTracker Tracker, long Cameraldx, HImage
Image, long FaceCount[], long IDs[], long MaxSizeInBytes);

Parameters:

Tracker — handle of the tracker in which to process the frame.

CameraIdx — index of the camera; should be equal to 0 in the current release.

Image — the HImage handle of the video frame to process.

FaceCount — address of the 64-bit integer value that will receive the count of faces tracked
in the current frame.

IDs —address of the array of 64-bit integer values that will receive the identifiers of the tracked
faces.

MaxSizeInBytes —amount of memory allocated for the IDs array.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.FeedFrame (tracker: Tracker, cameraldx: int, image:
Image, maxIDs: int = 512) -> List[int];

def Tracker.FeedFrame (cameraldx: int, img: Image, maxIDs: int
= 512) -> List[int];

Return Value:

The list of identifiers of the tracked faces.

Parameters:

maxIDs — the maximum number of faces tracked in the current frame.
Note:

The list of identifiers of the tracked faces.

FSDK_GetTrackerEyes Function

Retrieves the coordinates of the eye centers of a tracked face. The function accepts the identifier
returned by FSDK_FeedFrame. This identifier should be passed to FSDK_GetTrackerEyes
before the next call of FSDK_FeedFrame using the same tracker.

For the function to return the eye center coordinates, at least one of the parameters DetectEyes,
DetectFacialFeatures, RecognizeFaces, DetectGender, DetectAge or DetectExpression must be
set to true.

C++ Syntax:

int FSDK GetTrackerEyes (HTracker Tracker, long long Cameraldx,
long long ID, FSDK Features * FacialFeatures);

Delphi Syntax:

function FSDK GetTrackerEyes (Tracker: HTracker; Cameraldx, ID:
int64; FacialFeatures: PFSDK Features): integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 124

C# Syntax:

int FSDK.GetTrackerEyes(int Tracker, long Cameraldx, long ID,
out TPoint[] FacialFeatures)

VB Syntax:

Function FSDKVB GetTrackerEyes (ByVal Tracker As Long, ByVal
Cameraldx As Currency, ByVal ID As Currency, ByRef
FacialFeatures As TPoint) As Long

Java Syntax:

int FSDK.GetTrackerEyes (HTracker Tracker, long Cameraldx, long
ID, FSDK Features.ByReference FacialFeatures);

Android Syntax:

int FSDK.GetTrackerEyes (HTracker Tracker, long Cameraldx, long
ID, FSDK Features FacialFeatures);

Parameters:

Tracker — handle of the tracker where the coordinates of the eye centers will be retrieved.
CameraIdx —index of the camera; should be equal to O in the current release.
1D - identifier of the subject returned by FSDK_FeedFrame, whose eye center coordinates will

be received.
FacialFeatures — pointer to the FSDK_Features variable that will receive the eye center

coordinates.
Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID
was not returned by the previous FSDK_FeedFrame call.

Returns FSDKE_ATTRIBUTE_NOT_DETECTED if eye centers were not tracked on the
previous FSDK_FeedFrame call.

Python Syntax:

def FSDK.GetTrackerEyes (tracker: Tracker, cameraldx: int, ID:
int) -> Eyes;

def Tracker.GetEyes (cameraldx: int, ID: int) -> Eyes;

Return Value:
The Eyes object.

FSDK_GetTrackerFacialFeatures Function

Retrieves the coordinates of a tracked face’s features. The function accepts the identifier
returned by FSDK_FeedFrame. This identifier =~ should be passed to
FSDK_GetTrackerFacialFeatures before the next call of FSDK_FeedFrame with the same
tracker.

For the function to return the facial feature coordinates, either of the parameters
DetectFacialFeatures, DetectGender, DetectAge or DetectExpression should be set to true. See
the Tracker Parameters section for details.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 125

C++ Syntax:

int FSDK GetTrackerFacialFeatures (HTracker Tracker, long long
Cameraldx, long long ID, FSDK Features * FacialFeatures);

Delphi Syntax:

function FSDK GetTrackerFacialFeatures (Tracker: HTracker;
Cameraldx, ID: int64; FacialFeatures: PFSDK Features):
integer;

C# Syntax:

int FSDK.GetTrackerFacialFeatures (int Tracker, long Cameraldx,
long ID, out TPoint[] FacialFeatures)

VB Syntax:

Function FSDKVB GetTrackerFacialFeatures (ByVal Tracker As
Long, ByVal CameralIdx As Currency, ByVal ID As Currency, ByRef
FacialFeatures As TPoint) As Long

Java Syntax:

int FSDK.GetTrackerFacialFeatures (HTracker Tracker, long
Cameraldx, long ID, FSDK Features.ByReference FacialFeatures);

Android Syntax:

int FSDK.GetTrackerFacialFeatures (HTracker Tracker, long
Cameraldx, long ID, FSDK Features FacialFeatures);

Parameters:

Tracker — handle of the tracker from which to retrieve the facial feature coordinates.
CameraIdx — index of the camera; should be equal to O in the current release.

1D — identifier of the subject returned by FSDK_FeedFrame, whose facial feature coordinates
will be received.

FacialFeatures — pointer to the FSDK_Features variable to receive facial feature
coordinates.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID
was not returned by the previous FSDK_FeedFrame call.
ReturnsFSDKE_ATTRIBUTE_NOT_DETECTED if facial features were not tracked on the
previous FSDK_FeedFrame call.

Python Syntax:

def FSDK.GetTrackerFacialFeatures (tracker: Tracker, cameraldx:
int, ID: int) -> Features;

def Tracker.GetFacialFeatures (cameraldx: int, ID: int) ->
Features;

Return Value:
The Features object.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 126

Exceptions:
FSDK.IdNotFound

FSDK.AttributeNotDetected

FSDK_GetTrackerFacePosition Function

Retrieves the position of a tracked face. The function accepts the identifier returned by
FSDK_FeedFrame. This identifier should be passed to FSDK_GetTrackerFacePosition before
the next call of FSDK_FeedFrame with the same tracker.

C++ Syntax:

int FSDK GetTrackerFacePosition (HTracker Tracker, long long
Cameraldx, long long ID, TFacePosition * FacePosition);

Delphi Syntax:

function FSDK GetTrackerFacePosition (Tracker: HTracker;
Cameraldx, ID: int64; FacePosition: PFacePosition): integer;

C# Syntax:

int FSDK.GetTrackerFacePosition (int Tracker, long Cameraldx,
long ID, ref TFacePosition FacePosition);

VB Syntax:

Function FSDKVB GetTrackerFacePosition (ByVal Tracker As Long,
ByVal Cameraldx As Currency, ByVal ID As Currency, ByRef
facePosition As TFacePosition) As Long

Java Syntax:

int FSDK.GetTrackerFacePosition (HTracker Tracker, long
Cameraldx, long ID, TFacePosition.ByReference FacePosition);

Android Syntax:

int FSDK.GetTrackerFacePosition (HTracker Tracker, long
Cameraldx, long ID, TFacePosition FacePosition);

Parameters:

Tracker — handle of the tracker from which to retrieve the face position.

CameralIdx— index of the camera; should be equal to O in the current release.

1D — identifier of the subject returned by FSDK_FeedFrame whose face position will be
received.

FacePosition — pointer to the TFacePosition variable that will receive the face position.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID
was not returned by the previous FSDK_FeedFrame call.

Python Syntax:

def FSDK.GetTrackerFacePosition (tracker: Tracker, cameraldx:
int, ID: int) -> FacePosition;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 127

def Tracker.GetFacePosition (cameraldx: int, ID: int) ->
FacePosition;

Return Value:
The FacePosition object.

Exceptions:
FSDK.IdNotFound

FSDK_GetTrackerFacialAttribute Function

Given an attribute of a tracked face, retrieves its Values and their Confidences. The function
accepts the identifier returned by FSDK_FeedFrame. This identifier should be passed to
FSDK GetTrackerFacialAttribute before the next call of FSDK FeedFrame with the same
tracker.

The function allows for detecting gender when provided with the “Gender” attribute name, for
detecting age when provided with the “Age” attribute name and for detecting expression when
provided with the “Expression” attribute name. Refer to the
FSDK _DetectFacial AttributeUsingFeatures function description for details on attributes, their
Values and Confidences.

C++ Syntax:

int FSDK GetTrackerFacialAttribute (HTracker Tracker, long long
Cameraldx, long long ID, const char * AttributeName, char *
AttributeValues, long long MaxSizeInBytes);

Delphi Syntax:

function FSDK GetTrackerFacialAttribute (Tracker: HTracker;
Cameraldx, ID: intod; AttributeName, AttributeValues:
PAnsiChar; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.GetTrackerFacialAttribute (int Tracker, long
Cameraldx, long ID, string AttributeName, out string
AttributeValues, long MaxSizeInBytes);

VB Syntax:

Function FSDKVB GetTrackerFacialAttribute (ByVal Tracker As
Long, ByVal Cameraldx As Currency, ByVal ID As Currency, ByVal
AttributeName As String, ByRef AttributeValues As String,
ByVal MaxSizeInBytes As Currency) As Long

Java and Android Syntax:

int FSDK.GetTrackerFacialAttribute (HTracker Tracker, long
Cameraldx, long ID, String AttributeName, String
AttributeValues[], long MaxSizeInBytes);

Parameters:
Tracker — handle of the tracker whose attribute will be retrieved.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 128

CameraIdx — index of the camera; should be equal to 0 in the current release.

ID— identifier of a subject returned by FSDK_FeedFrame whose attribute will be retrieved.
AttributeName —name of the attribute.

AttributeValues — pointer to the null-terminated string that will receive the attribute
Values and their Confidences.

MaxSizeInBytes —amount of memory allocated for the output string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID
was not returned by the previous FSDK_FeedFrame call. Returns
FSDKE_ATTRIBUTE_NOT_DETECTED if the specified attribute was not detected on the
previous FSDK_FeedFrame call. Returns FSDKE_UNKNOWN_ATTRIBUTE if the
specified attribute name is not supported. Returns FSDKE_INSUFFICIENT_BUFFER_SIZE
if there is not enough room to store the output string; however, the output string still fills up
all the space available.

Python Syntax:

def FSDK.GetTrackerFacialAttribute (tracker: Tracker,
cameraldx: int, ID: int, attributeName: str) -> str;

def Tracker.GetFacialAttribute (cameraldx: int, ID: int,
attributeName: str) -> str;

Return Value:

The attribute Values and their Confidences as string.
Exceptions:

FSDK. IdNotFound
FSDK.AttributeNotDetected
FSDK.UnknownAttribute

FSDK_LockID Function

Locks an identifier. When an identifier is locked, at least one facial appearance of an identifier
will not be deleted during any possible purge. You should call this function before the
FSDK_SetName function. The function has no effect on identifiers which were already tagged
with a name. The call should be usually paired with FSDK_UnlockID call. When the user does
not set a name to a locked identifier, unlocking it allows it to become purged if necessary for
memory efficient memory use.

See the Locking Identifiers section for details. You may call this function with any identifier
regardless of when it was returned as long as it remains present in the tracker memory.

C++ Syntax:

‘int FSDK LockID (HTracker Tracker, long long ID);

Delphi Syntax:

‘function FSDK LockID(Tracker: HTracker; ID: int64): integer;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 129

C# Syntax:
‘int FSDK.LockID (int Tracker, long ID);

VB Syntax:

Function FSDKVB LockID (ByVal Tracker As Long, ByVal ID As
Currency) As Long

Java and Android Syntax:

int FSDK.LockID(HTracker Tracker, long ID);

Parameters:

Tracker — handle of the tracker in which to lock an identifier.
ID— identifier of the subject to lock.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID is
not present in the tracker memory.

Python Syntax:

def FSDK.LockID (tracker: Tracker, ID: int);

def Tracker.LockID(ID: int);

Return Value:

None.

Exceptions:
FSDK.IdNotFound

FSDK_UnlockID Function

Unlocks the ID so it may be purged. You should call this function after the FSDK_LockID call.
The function has no effect on identifiers which were already tagged with a name.

See the Locking identifiers section for details. You may call this function with any identifier
regardless of when it was returned, as long as it is present in the tracker memory.

C++ Syntax:

int FSDK UnlockID(HTracker Tracker, long long ID); ‘

Delphi Syntax:

‘function FSDK UnlockID(Tracker: HTracker; ID: int64): integer; ‘

C# Syntax:
‘int FSDK.UnlockID(int Tracker, long ID); ‘

VB Syntax:

Function FSDKVB UnlockID(ByVal Tracker As Long, ByVal ID As
Currency) As Long

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 130

Java and Android Syntax:

‘int FSDK.UnlockID (HTracker Tracker, long ID);

Parameters:

Tracker — handle of the tracker in which to unlock an identifier.
1D — identifier of the subject to unlock.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID is
not present in the tracker memory.

Python Syntax:

def FSDK.UnLockID(tracker: Tracker, ID: int);

def Tracker.UnLockID(ID: int);

Return Value:

None.

Exceptions:
FSDK.IdNotFound

FSDK_PurgelD Function

Removes all facial appearances of the ID from the tracker memory. You must call this function
if there was a false acceptance (see the Dealing with false acceptances section) or if you
erroneously assigned equal names to different persons.

C++ Syntax:

‘int FSDK PurgelID (HTracker Tracker, long long ID);

Delphi Syntax:

‘function FSDK PurgelD (Tracker: HTracker; ID: int64): integer;

C# Syntax:

‘int FSDK.PurgelID(int Tracker, long ID);

VB Syntax:

Function FSDKVB PurgelD(ByVal Tracker As Long, ByVal ID As
Currency) As Long

Java and Android Syntax:

int FSDK.PurgelD(HTracker Tracker, long ID);

Parameters:

Tracker — handle of the tracker in which to purge an identifier.
1D — identifier of the subject to purge.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 131

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID is
not present in the tracker memory.

Python Syntax:

def FSDK.PurgelD(tracker: Tracker, ID: int);

def Tracker.PurgeID(ID: int);

Return Value:

None.

Exceptions:
FSDK.IdNotFound

FSDK_GetName Function

Returns the name the identifier has been tagged with. You may call this function with any
identifier regardless of when it was returned, as long as it is present in the tracker memory.

C++ Syntax:

int FSDK GetName (HTracker Tracker, long long ID, char * Name,
long long MaxSizeInBytes) ;

Delphi Syntax:

function FSDK GetName (Tracker: HTracker; ID: int64; Name:
PAnsiChar; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.GetName (int Tracker, long ID, out string Name, long
MaxSizeInBytes) ;

VB Syntax:

Function FSDKVB GetName (ByVal Tracker As Long, ByVal ID As
Currency, ByRef Name As String, ByVal MaxSizeInBytes As
Currency) As Long

Java and Android Syntax:

int FSDK.GetName (int Tracker, long ID, String Name[], long
MaxSizeInBytes) ;

Parameters:

Tracker — handle of the tracker in which to retrieve the name.

1D — identifier of a subject to retrieve the name of.

Name — identifier of the subject whose name is to be retrieved.
MaxSizeInBytes —amount of memory allocated for the output string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_INSUFFICIENT_BUFFER_SIZE if there
is not enough room to store the output string; however, the output string still fills up all the

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 132

space available. Returns FSDKE_ID_NOT_FOUND if the specified ID is not present in the
tracker memory.

Python Syntax:

def FSDK.GetName (tracker: Tracker, ID: int) -> str;

def Tracker.GetName (ID: int) -> str;

Return Value:

Identifier of the subject whose name is to be retrieved.
Exceptions:

FSDK.IdNotFound

FSDK_SetName Function

Sets the name of an identifier. To erase the name tag, specify an empty name string. When
erasing the name tag because of a false acceptance, or because you erroneously assigned equal
names to different persons, you must also call the FSDK_PurgelD function (see the Dealing
with false acceptances section). The function will unlock the identifier if the name is
successfully set.

You may call this function with any identifier regardless of when it was returned, as long as it
IS present in the tracker memory.

C++ Syntax:

int FSDK SetName (HTracker Tracker, long long ID, const char *
Name) ;

Delphi Syntax:

function FSDK SetName (Tracker: HTracker; ID: int64; Name:
PAnsiChar): integer;

C# Syntax:

int FSDK.SetName (int Tracker, long ID, string Name);

VB Syntax:

Function FSDKVB SetName (ByVal Tracker As Long, ByVal ID As
Currency, ByVal Name As String) As Long

Java and Android Syntax:

int FSDK.SetName (HTracker Tracker, long ID, String Name) ;

Parameters:

Tracker — handle of the tracker in which to set the name.
1D — identifier of the subject whose name is to be set.
Name — pointer to the null-terminated string containing the name of an identifier.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID is
not present in the tracker memory.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 133

Returns FSDKE_INSUFFICIENT_TRACKER_MEMORY _LIMIT if there is not enough
room to store the identifier’s facial appearances in memory. See the Tracker Memory section
for details.

Python Syntax:

def FSDK.SetName (tracker: Tracker, ID: int, name: str);

def Tracker.SetName (ID: int, name: str);

Return Value:

None.

Exceptions:
FSDK.IdNotFound

FSDK_GetIiDReassignment Function

When provided with a subject’s ID received on earlier frames, returns the new subject’s ID if
there was a merger. See the Understanding Identifiers section for details. If an identifier was
not merged, the function returns the same ID value in the output variable. Note that the function
does not return an error if an identifier is not present in the tracker memory; instead; the same
ID value is returned in the output variable.

C++ Syntax:

int FSDK GetIDReassignment (HTracker Tracker, long long ID,
long long * ReassignedlID);

Delphi Syntax:

function FSDK GetIDReassignment (Tracker: HTracker; ID: int64;
ReassignedID: PInt64): integer;

C# Syntax:

int FSDK.GetIDReassignment (int Tracker, long ID, ref long
ReassignedID) ;

VB Syntax:

Function FSDKVB GetIDReassignment (ByVal Tracker As Long, ByVal
ID As Currency, ByRef ReassignedID As Currency) As Long

Java and Android Syntax:

int FSDK.GetIDReassignment (HTracker Tracker, long ID, long
ReassignedIDI[]);

Parameters:

Tracker — handle of the tracker in which to get the reassigned ID value.

1D — identifier of the subject whose reassigned identifier is sought.

ReassignedID - pointer to the 64-bit integer value that will store the reassigned value of an
identifier.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 134

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.GetIDReassignment (tracker: Tracker, ID: int) -> int;

def Tracker.GetIDReassignment (ID: int) -> int;

Return Value:
Identifier of the subject whose reassigned identifier is sought.

Exceptions:
FSDK.IdNotFound

FSDK_GetSimilarIDCount Function

Returns the number of identifiers that are similar to a given identifier. The function accepts the
identifier returned by FSDK_FeedFrame. This identifier should be passed to
FSDK_GetSimilarIDCount before the next call of FSDK_FeedFrame with the same tracker.
See the Understanding Identifiers section for details.

C++ Syntax:

int FSDK GetSimilarIDCount (HTracker Tracker, long long ID,
long long * Count);

Delphi Syntax:

function FSDK GetSimilarIDCount (Tracker: HTracker; ID: into64;
Count: PInt64): integer;

C# Syntax:

int FSDK.GetSimilarIDCount (int Tracker, long ID, ref long
Count) ;

VB Syntax:

FSDKVB GetSimilarIDCount (ByVal Tracker As Long, ByVal ID As
Currency, ByRef Count As Currency) As Long

Java and Android Syntax:

int FSDK.GetSimilarIDCount (HTracker Tracker, long ID, long
Countl]);

Parameters:

Tracker — handle of the tracker in which to retrieve the number of similar identifiers.
ID - identifier of the subject for which to return the number of similar identifiers.
Count — pointer to the 64-bit integer value that will store the number of similar identifiers.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID was
not returned by the previous FSDK_FeedFrame call.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 135

Python Syntax:

def FSDK.GetSimilarIDCount (tracker: Tracker, ID: int) -> int;

def Tracker.GetSimilarIDCount (ID: int) -> int;

Return Value:

The number of similar identifiers.
Exceptions:
FSDK.IdNotFound

FSDK_GetSimilarIDList Function

Returns the list of identifiers that are similar to a given identifier. The function accepts the
identifier returned by FSDK_FeedFrame. This identifier should be passed to
FSDK_GetSimilarIDL st before the next call of ESDK_FeedFrame with the same tracker. See
the Understanding Identifiers section for details.

C++ Syntax:

int FSDK GetSimilarIDList (HTracker Tracker, long long ID, long
long * SimilarIDList, long long MaxSizeInBytes);

Delphi Syntax:

function FSDK GetSimilarIDList (Tracker: HTracker; ID: int64;
SimilarIDList: PIDArray; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.GetSimilarIDList (int Tracker, long ID, out longl[]
SimilarIDList, long MaxSizeInBytes)

VB Syntax:

Function FSDKVB GetSimilarIDList (ByVal Tracker As Long, ByVal
ID As Currency, ByRef SimilarIDList As Currency, ByVal
MaxSizeInBytes As Currency) As Long

Java and Android Syntax:

int FSDK.GetSimilarIDList (HTracker Tracker, long ID, long
SimilarIDList[], long MaxSizeInBytes);

Parameters:

Tracker — handle of the tracker in which to get the list of similar identifiers.

ID - identifier of the subject for which to return the list of similar identifiers.
SimilarIDList — pointer to the array of 64-bit integer values that will store the list of
similar identifiers.

MaxSizeInBytes —amount of memory allocated for the output array.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID
was not returned by the previous FSDK_FeedFrame call. Returns

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 136

FSDKE_INSUFFICIENT_BUFFER_SIZE if there is not enough room to store the output
string; however, the output string still fills up all the space available.

Python Syntax:

def FSDK.GetSimilarIDList (tracker: Tracker, ID: int) ->
List[int];

def Tracker.GetSimilarIDList (ID: int) -> List[int];

Return Value:

The list of similar identifiers.
Exceptions:
FSDK.IdNotFound

FSDK_GetAlINames Function

Returns the list of names that an identifier can have. The function accepts the identifier returned
by FSDK_FeedFrame. This identifier should be passed to FSDK_GetAllNames before the next
call of ESDK_FeedFrame with the same tracker. See the Understanding Identifiers and Dealing
with false acceptances sections for details.

The function returns all names that belong to a given identifier, and similar identifiers, separated
by a semicolon. The output format is:

"Namel [; Name2 [;..]1"

You should call this function instead of FSDK_GetName whenever possible, and then parse
the returned string for all returned names. Alternatively, you may implement the functionality
of FESDK_GetAllINames, calling FSDK_GetName on the given identifier, then
FSDK_GetSimilariIDCount and FSDK_GetSimilarIDList to get the list of similar identifiers,
then finally call ESDK_GetName on that list.

C++ Syntax:

int FSDK GetAllNames (HTracker Tracker, long long ID, char *
Names, long long MaxSizeInBytes);

Delphi Syntax:

function FSDK GetAllNames (Tracker: HTracker; ID: int64; Names:
PAnsiChar; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.GetAllNames (int Tracker, long ID, out string Names,
long MaxSizeInBytes) ;

VB Syntax:

Function FSDKVB GetAllNames (ByVal Tracker As Long, ByVal ID As
Currency, ByRef Names As String, ByVal MaxSizelInBytes As
Currency) As Long

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 137

Java and Android Syntax:

int FSDK.GetAllNames (HTracker Tracker, long ID, String
Names[], long MaxSizeInBytes);

Parameters:

Tracker — handle of the tracker in which to retrieve the names.

1D — identifier of the subject whose possible names are to be retrieved.

Names — pointer to the null-terminated string that will receive the possible names of an
identifier.

MaxSizeInBytes —amount of memory allocated for the output string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID
was not returned by the previous FSDK_FeedFrame call. Returns
FSDKE_INSUFFICIENT_BUFFER_SIZE if there is not enough room to store the output
string; however, the output string still fills up all the space available.

Python Syntax:

def FSDK.GetAllNames (tracker: Tracker, ID: int) -> List([str];

def Tracker.GetAllNames (ID: int) -> List[str];

Return Value:

The list of possible names of an identifier.
Exceptions:

FSDK. IdNotFound

FSDK_SaveTrackerMemoryToFile Function

Saves the memory of a tracker to a file. Note that tracker parameters, along with its face tracking
state, are not saved. See the Saving and Loading Tracker Memory section for details.

C++ Syntax:

int FSDK SaveTrackerMemoryToFile (HTracker Tracker, const char
* [FileName) ;

Delphi Syntax:

function FSDK SaveTrackerMemoryToFile (Tracker: HTracker;
FileName: PAnsiChar): integer;

C# Syntax:

int FSDK.SaveTrackerMemoryToFile (int Tracker, string
FileName) ;

VB Syntax:

Function FSDKVB SaveTrackerMemoryToFile (ByVal Tracker As Long,
ByVal FileName As String) As Long

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 138

Java and AndroidSyntax:

int FSDK.SaveTrackerMemoryToFile (HTracker Tracker, String
FileName) ;

Parameters:

Tracker — handle of the tracker to save.
FileName — pointer to the null-terminated string containing the name of the file to which the
tracker memory will be saved.

Return Value:
Returns FSDKE_OK if successful. Returns FSDKE_IO_ERROR if an 1/O error has occurred.
Python Syntax:

def FSDK.SaveTrackerMemoryToFile (tracker: Tracker, fileName:
str);

def Tracker.SaveToFile (fileName: str);

Return Value:
None.
Exceptions:
FSDK.IOError

FSDK_LoadTrackerMemoryFromFile Function

Loads the memory of a tracker from a file. Note that tracker parameters, along with its face
tracking state, are not loaded. See the Saving and Loading Tracker Memory section for details.

C++ Syntax:

int FSDK LoadTrackerMemoryFromFile (HTracker * Tracker, const
char * FileName);

Delphi Syntax:

function FSDK LoadTrackerMemoryFromFile (Tracker: PHTracker;
FileName: PAnsiChar): integer;

C# Syntax:

int FSDK.LoadTrackerMemoryFromFile (ref int Tracker, string
FileName) ;

VB Syntax:

Function FSDKVB LoadTrackerMemoryFromFile (ByRef Tracker As
Long, ByVal FileName As String) As Long

Java and Android Syntax:

int FSDK.LoadTrackerMemoryFromFile (HTracker Tracker, String
FileName) ;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 139

Parameters:

Tracker — pointer that will store the handle of the loaded tracker.
FileName — pointer to the null-terminated string containing the name of a file from which the
tracker memory will be to loaded.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_BAD_FILE_FORMAT if the file has
unsupported format. Returns FSDKE_UNSUPPORTED_FILE_VERSION if the file was saved
with Luxand FaceSDK of an unsupported version. Returns FSDKE_FILE_NOT_FOUND if
there was an error opening the file. Returns FSDKE_IO_ERROR if an 1/O error has occurred.

Python Syntax:

def FSDK.LoadTrackerMemoryFromFile (fileName: str) -> Tracker;

@staticmethod
def Tracker.FromFile (fileName: str) —-> Tracker;

Return Value:

New Tracker object loaded from file.
Exceptions:

FSDK.IOError
FSDK.BadFileFormat
FSDK.UnsupportedFileVersion
FSDK.FileNotFound

FSDK_GetTrackerMemoryBufferSize Function

Returns the size of a buffer (in bytes) needed to save the memory of a tracker.
C++ Syntax:

int FSDK GetTrackerMemoryBufferSize (HTracker Tracker, long
long * BufSize);

Delphi Syntax:

function FSDK GetTrackerMemoryBufferSize (Tracker: HTracker;
BufSize: PInt64): integer;

C# Syntax:

int FSDK.GetTrackerMemoryBufferSize (int Tracker, ref long
BufSize) ;

VB Syntax:

Function FSDKVB GetTrackerMemoryBufferSize (ByVal Tracker As
Long, ByRef BufSize As Currency) As Long

Java and Android Syntax:

int FSDK.GetTrackerMemoryBufferSize (HTracker Tracker, long
BufSizell]);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 140

Parameters:

Tracker — handle of the tracker whose buffer size needs calculation.
BufSize — pointer to the 64-bit integer variable that will store the size of a buffer.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.GetTrackerMemoryBufferSize (tracker: Tracker) -> int;

Return Value:
The size of a buffer.

FSDK_SaveTrackerMemoryToBuffer Function

Saves the memory of a tracker to a buffer. Note that tracker parameters, along with its face
tracking state, are not saved. See the Saving and Loading Tracker Memory section for details.

C++ Syntax:

int FSDK SaveTrackerMemoryToBuffer (HTracker Tracker, unsigned
char * Buffer, long long MaxSizeInBytes);

Delphi Syntax:

function FSDK SaveTrackerMemoryToBuffer (Tracker: HTracker; var
Buffer; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.SaveTrackerMemoryToBuffer (int Tracker, out bytel]
Buffer, long MaxSizeInBytes);

VB Syntax:

Function FSDKVB SaveTrackerMemoryToBuffer (ByVal Tracker As
Long, ByRef Buffer As Byte, ByVal MaxSizeInBytes As Currency)
As Long

Java and Android Syntax:

int FSDK.SaveTrackerMemoryToBuffer (HTracker Tracker, byte
Bufferl[]);

Parameters:

Tracker — handle of the tracker to save.
Buffer — pointer to the buffer to which the tracker memory will be saved.
MaxSizeInBytes —amount of memory allocated for the output buffer, in bytes.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_INSUFFICIENT BUFFER_SIZE if
there is not enough room to store the output buffer.

Python Syntax:

def Tracker.GetMemory () -> bytes;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 141

def Tracker.ToBytes () -> bytes;

Return Value:
The by tes objects containing tracker memory.

FSDK_LoadTrackerMemoryFromBuffer Function

Loads the memory of a tracker from a buffer. Note that tracker parameters, along with its face
tracking state, are not loaded. See the Saving and Loading Tracker Memory section for details.

C++ Syntax:

int FSDK LoadTrackerMemoryFromBuffer (HTracker * Tracker, const
unsigned char * Buffer);

Delphi Syntax:

function FSDK LoadTrackerMemoryFromBuffer (Tracker: PHTracker;
var Buffer): integer;

C# Syntax:

int FSDK.LoadTrackerMemoryFromBuffer (ref int Tracker, bytel]
Buffer);

VB Syntax:

Function FSDKVB LoadTrackerMemoryFromBuffer (ByRef Tracker As
Long, ByRef Buffer As Byte) As Long

Java and Android Syntax:

int FSDK.LoadTrackerMemoryFromBuffer (HTracker Tracker, byte
Bufferl[]);

Parameters:

Tracker — pointer to store the handle of a loaded tracker.
Buffer — pointer to the buffer from which to load the tracker memory.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_BAD_FILE_FORMAT if the file has
unsupported format. Returns FSDKE_UNSUPPORTED_FILE_VERSION if the file was saved
with Luxand FaceSDK of an unsupported version.

Python Syntax:

def FSDK.LoadTrackerMemoryFromBuffer (buffer: bytes) ->
Tracker;

@staticmethod
def Tracker.FromMemory (buffer: bytes) -> Tracker;
@staticmethod
def Tracker.FromBytes (buffer: bytes) -> Tracker;

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 142

Return Value:
New Tracker objects loaded from a buf fer.

Multi-Core Support

The following FaceSDK functions use multiple CPU cores, thus speeding up the calculations:

FSDK DetectEyes,

FSDK DetectEyesInRegion,

FSDK DetectFace,

FSDK DetectMultipleFaces,

FSDK DetectFacialFeatures,

FSDK DetectFacialFeaturesInRegion,
FSDK GetFaceTemplate,

FSDK GetFaceTemplateInRegion,

FSDK GetFaceTemplateUsingFeatures,
FSDK GetFaceTemplateUsingEyes,
FSDK FeedFrame.

By default, these functions use all available processor cores. To get the number of processor
cores used, call the FSDK_GetNumThreads function. To limit the number of processor cores
used, call the FSDK_SetNumThreads function. Calling FSDK_SetNumThreads(1) will disable
multi-core support.

Note that each of these functions forks into a number of threads on each call. It is not
recommended to use nested parallelism when calling these functions; if you need nested
parallelism, you may limit the number of threads with the FSDK_SetNumThreads functions.
For example, if your application runs in several threads, and each thread executes
FSDK_DetectFace (which uses all available cores), this is acceptable; however, if each thread
forks into several threads, each executing FSDK_DetectFace, this could potentially reach the
limit of resources available.

It is safe to use extensions for parallel computation (like OpenMP) with the above FaceSDK
functions, if they are executed from a single thread. For example, the following C++ sample
code is acceptable:

#pragma omp parallel for
for (int i = 0; 1 < 100; i++)
FSDK DetectFace(...);

However, if your application forks into multiple threads, it is not recommended to execute the
above FaceSDK functions within OpenMP statements in such threads. If you must, consider
limiting the number of cores used by FaceSDK with the FSDK_SetNumThreads function.

FSDK_GetNumThreads Function

Retrieves the number of processor cores used by FaceSDK.
C++ Syntax:

int FSDK GetNumThreads (int * Num);

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 143

Delphi Syntax:

‘function FSDK GetNumThreads (Num: PInteger): integer;

C# Syntax:

‘int FSDK.GetNumThreads (ref int Num);

VB Syntax:

‘Function FSDKVB_ GetNumThreads (ByRef Num As Long) As Long

Java and Android Syntax:

‘int FSDK.GetNumThreads (int Num[]);

Parameters:

Num - pointer to an integer valueto receive the number of threads used by FaceSDK.

Return Value:
Returns FSDKE_OK if successful.
Python Syntax:

def FSDK.GetNumThreads () -> int;

Return Value:
The number of processor cores used by FaceSDK.

FSDK_SetNumThreads Function

Sets the number of processor cores to be used by FaceSDK. If you set the number of cores to
1, support for multiple cores will be disabled, and the SDK will use only a single processor

core.

C++ Syntax:

int FSDK SetNumThreads (int Num);

Delphi Syntax:

‘function FSDK SetNumThreads (Num: integer): integer;

C# Syntax:

‘int FSDK.SetNumThreads (int Num) ;

VB Syntax:

‘Function FSDKVB_ SetNumThreads (ByVal Num As Long) As Long

Java and Android Syntax:

‘int FSDK.SetNumThreads (int Num) ;

Parameters:

Num - the number of cores to be used by FaceSDK.
Return Value:

Returns FSDKE_OK if successful.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

144

Python Syntax:

def FSDK.SetNumThreads (num: int);

Return Value:
None.

Thread Safety

This chapter describes using FaceSDK in applications that execute FaceSDK functions from
multiple threads. If your program runs in a single thread (by default, this happens in almost all
environments), you can skip this chapter.

Most FaceSDK functions are safe for multithreaded operations. The functions not guaranteed
to be thread-safe are

FSDK Initialize,

FSDK Finalize,

FSDK ActivatelLibrary,
FSDK GetLicenselnfo,
FSDK GetHardware ID,
FSDK SetNumThreads.

When working with cameras in multiple threads on Windows platforms, make sure that each
thread calls the ESDK _InitializeCapturing function and the ESDK _FinalizeCapturing function
when the thread is done. The following functions are thread safe (on all supported platforms)
given that no different threads are simultaneously accessing the same camera handle:

FSDK GetVideoFormatList,
FSDK FreeVideoFormatList,
FSDK SetVideoFormat,

FSDK OpenVideoCamera,
FSDK CloseVideoCamera,
FSDK GrabFrame.

The following functions set global parameters that have effect on each thread:

FSDK SetFaceDetectionParameters,
FSDK SetFaceDetectionThreshold,
FSDK SetJpegCompressionQuality,
FSDK SetCameraNaming,

FSDK SetHTTPProxy,

FSDK SetNumThreads.

Note that HImage is safe only for multiple simultaneous reads or single write. Do not read
from (e.g. with FSDK_DetectFace) and write to (e.g. with FSDK_Freelmage) the same
HIimage handle at one time.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 145

For more information on thread safety of Tracker API, see the Thread Safety section in the
Tracker API chapter.

Migration

Migration from FaceSDK 8.1 to FaceSDK 8.2

Use iBeta Certified Liveness Add-on for enhanced passive liveness detection, available in the
samples\ibeta liveness add-on directory.

The minimum supported iOS version is 12.0.

The minimum supported Linux versions are CentOS/RHEL 8 (glibc 2.28+).

Migration from FaceSDK 7.2, 7.2.1 to FaceSDK 8.0, 8.1

For compatibility with the latest Xcode versions the libfsdk-static.a and libfsdk-static_64.a
libraries for iOS have been joined into a single library libfsdk-static.a.

NET applications now use FaceSDK.NET.dII built from the samples\advanced\.NET wrapper
source, so adding the appropriate binary file (facesdk.dll, libfsdk.dylib or libfsdk.so) is required.

The minimum supported iOS version is 9.0.
The minimum supported Android version is 5.0.
The minimum supported Windows version is Windows 7.

The minimum supported macOS version is 10.13.
Migration from FaceSDK 7.1 to FaceSDK 7.2, 7.2.1

InternalResizeWidth parameter values larger than 512 are now supported to allow for the
detection of even small faces on high-resolution images.

JPEG images are now automatically rotated on load using the EXIF data.

The minimum supported Linux versions are CentOS/RHEL 7. Older Linux versions are no
longer supported.

The minimum supported Windows version is Windows Vista.

Migration from FaceSDK 6.5.1 to FaceSDK 7.0, 7.1

Face Detection

Version 7.0 introduces a new face detection engine, which is more accurate when detecting
faces that are rotated out of plane, blurred, backlit, or in low lighting conditions.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 146

The new engine does not currently support TnternalResizeWidth parameter values larger
than 512 (see the FSDK _SetFaceDetectionParameters chapter). If you are detecting small faces
on high-resolution images with large TnternalResizeWidth values, consider splitting
such images into parts.

Whenthe TnternalResizeWidth is setto 512, faces that are heavily cropped and occupy
almost all of the image (such as when a face is too close to the camera) could be detected less
often than when smaller InternalResizeWidth values are used. However, large
InternalResizeWidth values are not necessary when detecting such faces. In this case,
consider setting the TnternalResizeWidth to 256 or less.

As the new engine uses color information, the face detection rates on grayscale images could
be lower (especially on small faces).

You may find that small faces are detected less often. In this case, try increasing the
InternalResizeWidth value, as the internal meaning of TnternalResizeWidth has
changed in the engine.

Template format changes

Version 7.0 improves the accuracy of the FSDK_GetFaceTemplate and FSDK_MatchFaces
functions. Templates are extracted in such a way that the false acceptance rates are decreased
when matching blurred, low-lit, and out-of-plane faces.

The accuracy of matching templates extracted by previous FaceSDK versions is unchanged. To
enjoy the increased accuracy, consider re-extracting your templates from the source images by
using version 7.0.

If you are using Tracker API with the KeepFace Images parameter set to true, the Tracker
facial appearances will be automatically re-extracted when the Tracker memory, saved with
versions 6.5 or 6.5.1, is loaded (using the FESDK_LoadTrackerMemoryFromFile or
FSDK_LoadTrackerMemoryFromBuffer functions). This may take some time, depending on
the size of your Tracker memory.

Removal of libstdc++ dependency on iOS

FaceSDK 7.0 for iOS has removed the dependency on the libstdc++ library to increase
compatibility with Xcode 10. FaceSDK sample applications for iOS are no longer using
libstdc++. To switch from using libstdc++ to using libc++ in your Xcode project, visit Build
Settings — C++ Standard Library. iOS 5.x and 6.x are no longer supported.

Migration from FaceSDK 6.5 to FaceSDK 6.5.1

The 6.5.1 version improves the extraction of facial templates from images taken under very low
lighting conditions. As the 6.5 version might produce higher false acceptance rates on such
images, it is recommended that you re-extract your facial templates from the source pictures
using the 6.5.1 version.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 147

If you were using Tracker APl with the KeepFacelmages parameter set to true, the Tracker
facial appearances will be automatically re-extracted when the Tracker memory, saved with the
6.5 version, is loaded (using the FSDK_LoadTrackerMemoryFromFile or
FSDK_LoadTrackerMemoryFromBuffer functions). This may take some time, depending on
the size of your Tracker memory. If you were using the Tracker API in very low light, it is
recommended that you start the Tracker memory from scratch and re-enroll your subjects.

Migration from FaceSDK 6.3, 6.3.1, 6.4 to FaceSDK 6.5

Template format changes

The 6.5 version improves face matching accuracy. It achieves a true acceptance rate of 99.83%
and a false acceptance rate of 0.1% for the NIST FRGC protocol, ROC1 (compared to the
93.9% true acceptance rate achieved by the 6.4 version).

To achieve the accuracy increase, it was necessary to change the format of the face template
(the FSDK_FaceTemplate structure). The size of the face template was decreased to 1040 bytes.
To migrate to the 6.5 version and start using the new face templates, you need to update the
Luxand FaceSDK interface header files in your project (see Using FaceSDK with Programming
Languages) and rebuild your application. If you were relying on the size of the old face template
structure (13324 bytes), for example, while saving it to a database, you need to change this
value to 1040.

As the new face template is not compatible with the face template from previous versions, you
need to re-extract the templates for every face in your database (with the
FSDK_GetFaceTemplate, FSDK_GetFaceTemplatelnRegion, or
FSDK_GetFaceTemplateUsingFeatures functions) from the source pictures. As the template
format may change again in future versions, it is recommended that you store both the original
face images and their templates in the database.

The 6.5 version increased its matching accuracy, because of its more sophisticated models.
However, such models require more calculations. The speed of template extraction is now lower
than in the 6.4 version. This means that on slow devices, you may get lower frame rates when
extracting face templates, with either the FSDK_GetFaceTemplate,
FSDK_GetFaceTemplatelnRegion, or FSDK_GetFaceTemplateUsingFeatures functions.

Template matching

The 6.5 version substantially increases the speed of face matching on most platforms. You are
unlikely to require any code changes to adapt to this.

Tracker API changes

Since the template format has changed, the Tracker memory from previous Luxand FaceSDK
versions is not compatible with the 6.5 version. This means you cannot load the Tracker
memory saved with Luxand FaceSDK 6.4 (and earlier) using the
FSDK_LoadTrackerMemoryFromFile or FSDK_LoadTrackerMemoryFromBuffer functions.
To migrate to the 6.5 version, you need to start a new Tracker memory file and enroll all your
subjects again.

If it is not possible for you to regenerate the templates or start a new Tracker memory, please
contact our support at https://www.luxand.com/support/ .

To make the transition to new template formats easier when using Tracker API, we added the
KeepFacelmages parameter. When set to true (which is the default value), it will store the

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 148

https://www.luxand.com/support/

original facial images in the Tracker memory. If the template format changes in the new version
of Tracker API, you will be able to convert your previous Tracker memory to the new template
format automatically, so you won’t need to reenroll your subjects. If you don’t like the original
facial images to be stored in the Tracker memory, you need to explicitly set this parameter to
false. See the Storing original facial images section for more details.

As the speed of template extraction has decreased compared to the 6.4 version, you may get
lower frame rates when the RecognizeFaces parameter is set to true. In older versions, it was
recommended that higher frame rates were preferable, in order that Tracker API could collect
more facial appearances of a person per unit of time, which positively affected the accuracy
(see the Tuning for Optimal Performance chapter). However, the Tracker API in the 6.5 version
is less affected by the frame rate, because it has more robust face matching. Even if you're
processing about 1 frame per second on a slow device, it is usually enough for Tracker API to
efficiently recognize persons; even with that frame rate, you’re likely to get much higher
recognition rates than in the 6.4 version with higher frame rates.

Note that if your RecognizeFaces is set to false when using Tracker API (for example, when
you only detect faces or facial features), your frame rate will not decrease.

The RecognitionPrecision parameter now has no effect and is not recommended for
use.

Migration from FaceSDK 6.2 to FaceSDK 6.3, 6.3.1, 6.4

The 6.3 version increases minimal OS version requirements. Applications developed with
Luxand FaceSDK 6.3 will not support any Windows versions earlier than Windows XP SP3 or
Windows 2003 SP2 and will not support any macOS versions earlier than 10.7.

If you are using Luxand FaceSDK with Microsoft .NET, note that FaceSDK.NET.dIl now
requires .NET 4.0 or higher. You need to redistribute Microsoft Visual C++ Redistributable for
Visual Studio 2017 with your application.

If you are using an older version of .NET (for example, 2.0, 3.0 or 3.5), you must switch to the
component available in the source code form in the samples\advanced\ .NET wrapper
directory. Note that this component is actually a wrapper for facesdk.dll that is linked
dynamically, so facesdk.dll must be redistributed with the application that uses this wrapper.
The LiveRecognition sample includes projects for Microsoft C# 2005/2008 and Visual Basic
.NET 2005/2008 that are using this wrapper.

The LiveFacialFeatures, GenderRecognition and ExpressionRecognition samples were updated
to be compatible with i10OS 11. If your code was based on these samples, update your code as
indicated below. You need to implement the changes as per the illustration (in short, moving

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 149

the code that creates the cache from drawFrameWithWidth to onGLInit). These changes were
implemented in the TrackingViewController.mm file of the samples.

TrackingViewController.mm vs. TrackingViewController.mm-NEW
ingVi ntroller.mm-NEW - /LiveFacialFe lasse:

]

status: § differences Actions B

Migration from FaceSDK 6.0, 6.0.1, 6.1 to FaceSDK 6.2

The 6.2 version adds 4 new facial feature points (numbered 66 to 69), detecting 70 facial
features instead of 66 in the previous release. The following constants are added:

FSDKP_FACE_CONTOUR14,
FSDKP_FACE_CONTOUR15,
FSDKP_FACE_CONTOURI1S6,
FSDKP_FACE_CONTOURL1Y7.

The numbering of the 66 facial features detected previously was not changed. It means that the
new numbering is backwards compatible with the previous numbering. When migrating to the

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 150

6.2 or 6.3 version, make sure that you are using the new header files (or wrappers), since the
FSDK _Features type now contains 4 more points.

The ESDK_GetFaceTemplateUsingFeatures function still employs only the first 66 facial
features.

The performance of retrieving live video in the LiveFacialFeatures sample for iOS and Android
is increased. If you were using this sample code in your project, consider replacing the
corresponding parts of your code to increase the performance of your app.

Migration from FaceSDK 5.0, 5.0.1 to FaceSDK 6.0, 6.0.1, 6.1

Important changes for users migrating to Luxand FaceSDK 6.0, 6.01 or 6.1 from the 5.0 or
5.0.1 versions:

The FSDK_GetFaceTemplate and FSDK_GetFaceTemplatelnRegion functions now detect
facial features with the same accuracy as the FSDK_DetectFacialFeatures function. The
accuracy of face recognition is now the same regardless of whether you call
FSDK_GetFaceTemplate/FSDK_GetFaceTemplatelnRegion or first detect facial features and
then pass them to the FSDK_GetFaceTemplateUsingFeatures function.

The recognition accuracy of Tracker APl when RecognitionPrecision=1 is now independent of
the values of the DetectFacialFeatures or DetectGender parameters.

The FacialFeaturelitterSuppression parameter of Tracker APl now allows for better facial
feature smoothing; however, its default setting may consume more processor resources. You
may set its value to O if you need to consume fewer resources.

Migration from FaceSDK 4.0 to FaceSDK 5.0, 5.0.1

Important changes for users migrating to Luxand FaceSDK 5.0 or 5.0.1 from the 4.0 version:

The function FSDK_GetFaceTemplateUsingFeatures is no longer deprecated. The function
expects that the coordinates of all facial features are detected. If you are passing just the
coordinates of eye centers (detected with FSDK_DetectEyes, FSDK_DetectEyesinRegion) to
the function, call FSDK_GetFaceTemplateUsingEyes instead.

The format of the face template has changed. The size of the template is now 13324 bytes. If
you have stored face templates in a database, you must recreate them from the original photos
by calling the FSDK_GetFaceTemplate or FSDK_GetFaceTemplateInRegion functions.

The FSDK_MatchFaces function now returns an error when the template has an invalid format
or when the formats of the templates are not supported (that is, when face templates was created
with an unsupported version of Luxand FaceSDK).

If you were calling FSDK_GetFaceTemplate or FSDK_GetFaceTemplatelnRegion, you may
find that they consume more time. This is because these functions extract face templates with
higher accuracy. If you need higher performance, replace these calls with FSDK_DetectEyes
or FSDK DetectEyesinReqgion, and call FSDK GetFaceTemplateUsingEyes. See the Face
Matching section for details.

On the other hand, if you were detecting eyes and then passing their coordinates to
FSDK_GetFaceTemplateUsingEyes, you need to replace this call together with the detection

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 151

of eye centers to the FSDK_GetFaceTemplate or FSDK_GetFaceTemplatelnRegion function
to achieve the higher accuracy available in the 5.0 version.

Migration from FaceSDK 3.0 to FaceSDK 4.0

Recommendations on how to migrate from version 3.0 to version 4.0 are included.

1. The 4.0 version introduces a new high-quality algorithm for facial feature detection. The
new version detects 66 facial features (see the Detected Facial Features chapter).

2. The 4.0 version enhances the accuracy of inner facial feature (nose, eyes, and mouth)
detection. To make this enhancement possible, facial feature points of the upper part of
the head were removed. The following facial feature points (and their corresponding
constants) were removed:

FSDKP_FACE_CONTOURS, FSDKP_FACE_CONTOURA4,
FSDKP_FACE_CONTOURS, FSDKP_FACE_CONTOURG,
FSDKP_FACE_CONTOURY, FSDKP_FACE_CONTOURS,
FSDKP_FACE_CONTOURY, FSDKP_FACE_CONTOURI10,
FSDKP_FACE_CONTOUR11

If you were using some of these features, you may calculate their approximate
positions by relying on the coordinates of other facial features.

3. You may find that FaceSDK consumes more CPU resources than the previous version.
The SDK uses all available CPU cores for face detection and recognition functions,
achieving higher speed. If you need the SDK to use just a single core (as in the
previous version), use the FSDK_SetNumThreads function.

4. The following functions are deprecated and will not be supported in the future Luxand
FaceSDK versions: FSDK_GetFaceTemplateUsingFeatures

Migration from FaceSDK 2.0 to FaceSDK 3.0

This section tells about changes in FaceSDK 3.0 as compared to FaceSDK 2.0. There are also
recommendations on how to migrate from version 2.0 to version 3.0.

1. As version 3.0 has introduced a new enhanced face recognition algorithm, the format of
a template changed as well. Now it is enough to detect only eye centers, rather than all
features to build a template. If your application used to detect facial features and then
created a template using detected features, now the feature detection stage can be
skipped or replaced by detection of eye centers (i.e. FSDK_DetectFacialFeatures can be
replaced by FSDK_DetectEyes). The size of a template was reduced to 16384 bytes. If
your application used a database of saved templates, it is necessary to recreate these
templates using source images.

2. New version introduces new functions for quick detection of eye centers —
FSDK_DetectEyes and FSDK_DetectEyesinRegion. These functions are recommended
for use if it is necessary to detect eye centers in real time.

3. The meaning of similarity returned by FSDK_MatchFaces function has changed. Now
similarity is approximately equal to the probability that templates belong to one and the
same person. More information on this topic can be found in Face Matching chapter.

4. The new FESDK_SetCameraNaming function is added. It determines what the
FSDK_GetCameralList function returns — either the list of camera names available in

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 152

the system, or the list of unique device paths of these cameras. (It may be required if
two similar webcams of the same manufacturer are plugged in to the computer.)

5. Camera management functions are included into facesdk.dll. If you used camera
management in your applications, you may remove facesdkcam.dll and header files
related to facesdkcam.

6. .NET wrapper does not require facesdk.dll. The camera management functions are also
included into FaceSDK.NET.dII (but they are still located in class FSDKcam). Now the
wrapper is located in the directories \bin\win32\ for 32-bit applications and
\bin\win64\ for 64-bit applications.

7. The following functions have been removed from the library and will not be supported:
FSDK_LocateFace, FSDK _LocateFacialFeatures, FSDK_ExtractFacelmage.

8. The following functions are deprecated and will not be supported in the future Luxand
FaceSDK versions: FSDK_GetFaceTemplateUsingFeatures

Error Codes
The FaceSDK library defines the following error codes:

Error Name Value
FSDKE_OK 0
FSDKE_FAILED -1
FSDKE_NOT_ACTIVATED -2
FSDKE_OUT_OF_MEMORY -3
FSDKE_INVALID_ARGUMENT —4
FSDKE_IO_ERROR 5
FSDKE_IMAGE_TOO_SMALL —6
FSDKE_FACE_NOT_FOUND —7
FSDKE_INSUFFICIENT_BUFFER_SIZE -8
FSDKE_UNSUPPORTED_IMAGE_EXTENSION -9
FSDKE_CANNOT_OPEN_FILE ~10
FSDKE_CANNOT_CREATE_FILE -11
FSDKE_BAD_FILE_FORMAT -12
FSDKE_FILE_NOT_FOUND ~13
FSDKE_CONNECTION_CLOSED -14
FSDKE_CONNECTION_FAILED -15
FSDKE_IP_INIT_FAILED -16
FSDKE_NEED_SERVER_ACTIVATION -17

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com 153

FSDKE_ID_NOT_FOUND -18
FSDKE_ATTRIBUTE_NOT_DETECTED -19
FSDKE_INSUFFICIENT_TRACKER_MEMORY_LIMIT -20
FSDKE_UNKNOWN_ATTRIBUTE 21
FSDKE_UNSUPPORTED_FILE_VERSION -22
FSDKE_SYNTAX_ERROR -23
FSDKE_PARAMETER_NOT_FOUND -24
FSDKE_INVALID_TEMPLATE -25
FSDKE_UNSUPPORTED_TEMPLATE_VERSION -26
FSDKE_CAMERA_INDEX_DOES_NOT_EXIST -27
FSDKE_PLATFORM_NOT_LICENSED -28
FSDKE_TENSORFLOW_NOT_INITIALIZED -29
FSDKE_PLUGIN_NOT_LOADED -30
FSDKE_PLUGIN_NO_PERMISSION -31

Library Information
The FaceSDK library uses:

® TensorFlow-Lite © Google, LLC;
OpenVINO © Intel Corporation;
tbb © Intel Corporation;

libcurl © Daniel Stenberg;
libpng © Glenn Randers-Pehrson;

libjpeg-turbo (copyright by Miyasaka Masaru, TigerVNC and VirtualGL projects);

easybmp © The EasyBMP Project (http://easybmp.sourceforge.net);
RSA Data Security, Inc. MD5 Message-Digest Algorithm.

Copyright © 2005-2024 Luxand, Inc. https://www.luxand.com

154

http://easybmp.sourceforge.net/

	Overview
	Requirements
	Technical Specifications
	Face Detection
	Face Matching
	Live Video Recognition with Tracker API
	Facial Feature Detection
	Eye Centers Detection
	Gender Recognition
	Age Recognition
	Facial Expression Recognition
	Liveness detection
	Multi-Core Support
	Library Size

	Installation
	Windows
	Linux/macOS
	Directory Structure

	Sample Applications
	Using FaceSDK with Programming Languages
	Using with .NET (C# and VB)
	Using CImage class in .NET
	CImage();
	CImage(Int);
	CImage.ReloadFromHandle();

	Using with C/C++
	Using with Delphi
	Using with Java
	Using with Cocoa
	Using with VisualBasic 6.0
	Using with iOS
	Using with Android
	Using with Python
	Using with Flutter
	Using with React Native
	Using with Web Assembly
	Unicode support

	Redistributables
	Usage Scenarios
	Library Activation
	FSDK_GetHardware_ID Function
	FSDK_ActivateLibrary Function
	FSDK_GetLicenseInfo Function

	Initialization
	FSDK_Initialize Function
	FSDK_Finalize Function

	Configuration
	FSDK_SetParameter Function
	FSDK_SetParameters Function
	FaceSDK Parameters
	Face detection parameters

	Working with Images
	FSDK_CreateEmptyImage Function
	FSDK_LoadImageFromFile Function
	FSDK_LoadImageFromFileW Function
	FSDK_SaveImageToFile Function
	FSDK_SaveImageToFileW Function
	FSDK_LoadImageFromBuffer Function
	FSDK_LoadImageFromJpegBuffer Function
	FSDK_LoadImageFromPngBuffer Function
	FSDK_GetImageBufferSize Function
	FSDK_SaveImageToBuffer Function
	FSDK_LoadImageFromHBitmap Function
	FSDK_SaveImageToHBitmap Function
	FSDK.LoadImageFromCLRImage Function
	FSDK.SaveImageToCLRImage Function
	FSDK.LoadImageFromAWTImage Function
	FSDK.SaveImageToAWTImage Function
	FSDK_SetJpegCompressionQuality
	FSDK_GetImageWidth Function
	FSDK_GetImageHeight Function
	FSDK_CopyImage Function
	FSDK_ResizeImage Function
	FSDK_RotateImage Function
	FSDK_RotateImageCenter Function
	FSDK_RotateImage90 Function
	FSDK_CopyRect Function
	FSDK_CopyRectReplicateBorder Function
	FSDK_MirrorImage Function
	FSDK_FreeImage Function

	Face Detection
	Face Detection Models
	Face Detection on Thermal Images
	Data types
	FSDK_DetectFace Function
	FSDK_DetectMultipleFaces Function
	FSDK_SetFaceDetectionParameters Function
	FSDK_SetFaceDetectionThreshold Function

	Facial Feature Detection
	FSDK_DetectFacialFeatures Function
	FSDK_DetectFacialFeaturesInRegion Function
	FSDK_DetectEyes Function
	FSDK_DetectEyesInRegion Function
	Detected Facial Features

	Mask-on Face Detection
	Face Matching
	FSDK_GetFaceTemplate Function
	FSDK_GetFaceTemplateInRegion Function
	FSDK_GetFaceTemplateUsingEyes Function
	FSDK_GetFaceTemplateUsingFeatures Function
	FSDK_MatchFaces Function
	FSDK_GetMatchingThresholdAtFAR Function
	FSDK_GetMatchingThresholdAtFRR Function

	Gender, Age and Facial Expression Recognition
	FSDK_DetectFacialAttributeUsingFeatures Function
	FSDK_GetValueConfidence Function

	Liveness Detection
	Passive Liveness
	Active Liveness
	Thermal Face Detection

	iBeta Certified Liveness Add-on
	Activation
	Initialization
	General usage
	iBeta liveness add-on files
	Image requirements
	Image format
	Image resolution
	Image composition
	Sample images
	Good examples
	Correct, but not good enough samples
	Incorrect samples

	Configuration files

	Working with Cameras
	Data Types
	FSDK_InitializeCapturing Function
	FSDK_FinalizeCapturing Function
	FSDK_SetCameraNaming Function
	FSDK_GetCameraList Function
	FSDK_GetCameraListEx Function
	FSDK_FreeCameraList Function
	FSDK_GetVideoFormatList Function
	FSDK_FreeVideoFormatList Function
	FSDK_SetVideoFormat Function
	FSDK_OpenVideoCamera Function
	FSDK_OpenIPVideoCamera Function
	FSDK_SetHTTPProxy Function
	FSDK_GrabFrame Function
	FSDK_CloseVideoCamera Function

	Tracker API: Face Recognition and Tracking in Video Streams
	What is Tracker API
	Understanding Identifiers
	A subject can have several identifiers
	Merger of identifiers
	When identifiers are not merged
	Similar identifiers

	Tracker Memory
	Memory available for each subject
	Imposing memory limits
	How to set the memory limit

	Tracker Parameters
	Face tracking parameters
	Face recognition parameters
	Facial feature tracking parameters

	Tuning for Optimal Performance
	Using the API
	Locking identifiers
	Multiple camera support
	Storing original facial images
	Usage Scenario

	User Interaction with the System
	Enrollment
	Dealing with false acceptances

	Saving and Loading Tracker Memory
	Recognition Performance
	Performance measures
	Understanding storage events
	How to measure your rate of storage events
	Understanding FAR
	Understanding R
	Choosing Threshold value

	Gender, Age and Facial Expression Recognition
	Face, Eye and Facial Feature Tracking
	Counting the number of people

	Thread Safety
	FSDK_CreateTracker Function
	FSDK_FreeTracker Function
	FSDK_ClearTracker Function
	FSDK_SetTrackerParameter Function
	FSDK_SetTrackerMultipleParameters Function
	FSDK_GetTrackerParameter Function
	FSDK_FeedFrame Function
	FSDK_GetTrackerEyes Function
	FSDK_GetTrackerFacialFeatures Function
	FSDK_GetTrackerFacePosition Function
	FSDK_GetTrackerFacialAttribute Function
	FSDK_LockID Function
	FSDK_UnlockID Function
	FSDK_PurgeID Function
	FSDK_GetName Function
	FSDK_SetName Function
	FSDK_GetIDReassignment Function
	FSDK_GetSimilarIDCount Function
	FSDK_GetSimilarIDList Function
	FSDK_GetAllNames Function
	FSDK_SaveTrackerMemoryToFile Function
	FSDK_LoadTrackerMemoryFromFile Function
	FSDK_GetTrackerMemoryBufferSize Function
	FSDK_SaveTrackerMemoryToBuffer Function
	FSDK_LoadTrackerMemoryFromBuffer Function

	Multi-Core Support
	FSDK_GetNumThreads Function
	FSDK_SetNumThreads Function

	Thread Safety
	Migration
	Migration from FaceSDK 8.1 to FaceSDK 8.2
	Migration from FaceSDK 7.2, 7.2.1 to FaceSDK 8.0, 8.1
	Migration from FaceSDK 7.1 to FaceSDK 7.2, 7.2.1
	Migration from FaceSDK 6.5.1 to FaceSDK 7.0, 7.1
	Face Detection
	Template format changes
	Removal of libstdc++ dependency on iOS

	Migration from FaceSDK 6.5 to FaceSDK 6.5.1
	Migration from FaceSDK 6.3, 6.3.1, 6.4 to FaceSDK 6.5
	Template format changes
	Template matching
	Tracker API changes

	Migration from FaceSDK 6.2 to FaceSDK 6.3, 6.3.1, 6.4
	Migration from FaceSDK 6.0, 6.0.1, 6.1 to FaceSDK 6.2
	Migration from FaceSDK 5.0, 5.0.1 to FaceSDK 6.0, 6.0.1, 6.1
	Migration from FaceSDK 4.0 to FaceSDK 5.0, 5.0.1
	Migration from FaceSDK 3.0 to FaceSDK 4.0
	Migration from FaceSDK 2.0 to FaceSDK 3.0

	Error Codes
	Library Information

